1.Noori, R., Maghrebi, M., Jessen, S., Bateni, S. M., Heggy, E., Javadi, S., Noury, M., Pistre, S., Abolfathi, S., & AghaKouchak, A. (2023). Decline in Iran’s groundwater recharge.
Nature Communications, 14 (1), 6674.
https:// doi.org/10.1038/s41467-023-42411-2.
2.Monteith, J. L. (1965). Evaporation and environment. Symposia of the Society for Experimental Biology, 19, 205-234.
3.Allen, R. G., Tasumi, M., & Trezza, R. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model.
Journal of Irrigation and Drainage Engineering, 133 (4), 380-394.
https://doi.org/10.1061.
4.Zamani Losgedaragh, S., & Rahimzadegan, M. (2018). Evaluation of SEBS, SEBAL, and METRIC models in estimation of the evaporation from the freshwater lakes (Case study: Amirkabir dam, Iran). Journal of Hydrology, 561, 523-531. https://doi.org/10.1016/j. jhydrol. 2018.04.025.
5.Rawat, K. S., Bala, A., Singh, S. K., & Pal, R. K. (2017). Quantification of wheat crop evapotranspiration and mapping: A case study from Bhiwani District of Haryana, India. Agricultural Water Management, 187, 200-209. https://doi. org/10.1016/j. agwat. 2017.03.015.
6.Evcen, A., & Yağcı, A. L. (2022). Gerçek Evapotranspirasyonun Landsat Uydu Görüntüleri Kullanarak SEBAL Modeli ile Hesaplanması: Bolu/Yeniçağa Örneği.
Turkish Journal of Remote Sensing and GIS, 3 (2), 172-182.
https://doi.org/ 10.48123/rsgis. 1126221.
7.Shamloo, N., Taghi Sattari, M., Apaydin, H., Valizadeh Kamran, K., & Prasad, R. (2021). Evapotranspiration estimation using SEBAL algorithm integrated with remote sensing and experimental methods. International Journal of Digital Earth, 14 (11), 1638–1658. https://doi. org/10.1080/17538947.2021.1962996.
8.Dhruw, M., Pandey, V. K., & Verma, S. (2023). Actual Crop Evapotranspiration Estimation of Wheat Crop Using SEBAL Algorithm and Remotely Sensed Data. Current Journal of Applied Science and Technology, 42 (20), 15-25. https://doi. org/10.9734/cjast/2023/v42i204150.
9.Vicente Liendro Moncada, J., José Araújo da Silva, T., José, J. V., Bonfim-Silva, E. M., Fenner, W., & Oliveira, N. P. R. de. (2022). Evapotranspiration mapping of cotton fields in Brazil: Comparison between SEBAL and FAO-56 method. Geocarto International, 37 (17), 5133-5149. https://doi.org/10.1080/10106049.2021.1920633.
10.Nosrati, K., Mohseni Saravi, M., Ahmadi, H., & Aghighi, H. (2015). Evapo-transpiration estimation in Taleghan Drainage Basin using MODIS images and SEBAL model. Journal of Range and Watershed Managment, 68 (2), 385-398. https://doi.org/10. 22059/jrwm. 2015.54937.
11.Karbasi, M., Moghadam, M., Nikbakht, J., & Kaviani, A. (2016). Estimation of crop actual evapotranspiration using SEBAL algorithm (Case study: Khoramdareh region at Zanjan province). Iranian Journal of Ecohydrology, 3 (3), 427-437. https://doi.org/10. 22059/ije.2016.60031.
12.Goshehgir, A. S., Golabi, M., & Naseri, A. A. (2018). Comparison of actual evapotranspiration estimated using gram-schmidt method and SEBAL algorithm with lysimeteric data (Case study; Amir Kabir Sugarcane Argo-Industry). Iran-Water Resources Research, 14 (1), 125-139.
13.Rahimi, S., Gholami Sefidkouhi, M. A., Raeini-Sarjaz, M., & Valipour, M. (2015). Estimation of actual evapotranspiration by using MODIS images (a case study: Tajan catchment). Archives of Agronomy and Soil Science, 61 (5), 695-709. https://doi.org/10. 1080/03650340.2014.944904.
14.Morshedi, A., Jafari, H., & Onabi Milani, A. (2022). Estimation of Actual Evapotranspiration of Wheat Using SEBAL Algorithm Compared to Lysimetric Results under Standard Conditions in Tabriz and Karaj Research Stations. Journal of Water Research in Agriculture, 36 (1), 21-33. https://doi. org/10.22092/jwra. 2022.356223.896.
15.Kamyab, A. D., Mokhtari, S., & Jafarinia, R. (2022). A comparative study in quantification of maize evapotranspiration for Iranian maize farm using SEBAL and METRIC-1 EEFLux algorithms.
Acta Geophysica, 70 (1), 319-332.
https://doi.org/10. 1007/s11600-021-00704-4.
16.Yagci, A. L., & Santanello, J. A. (2018). Estimating Evapotranspiration From Satellite Using Easily Obtainable Variables: A case study over the Southern Great Plains, U. S. A. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11 (1), 12-23. https://doi.org/ 10.1109/JSTARS. 2017.2753723.
17.Li, Z. L., Tang, R., Wan, Z., Bi, Y., Zhou, C., Tang, B., Yan, G., & Zhang, X. (2009). A review of current methodologies for regional evapotranspiration estimation from remotely sensed data. Sensors (Basel, Switzerland), 9 (5), 3801-3853. https:// doi.org/10.3390/s90503801.
18.Mohan, M. M. P., Kanchirapuzha, R., & Varma, M. R. R. (2020). Review of approaches for the estimation of sensible heat flux in remote sensing-based evapotranspiration models. Journal of Applied Remote Sensing, 14 (4), 041501. https://doi.org/10.1117/1.JRS.14.041501.
19.Bastiaanssen, W. G. M., Noordman, E. J. M., Pelgrum, H., Davids, G., Thoreson, B. P., & Allen, R. G. (2005). SEBAL Model with Remotely Sensed Data to Improve Water-Resources Management under Actual Field Conditions.
Journal of Irrigation and Drainage Engineering, 131 (1), 85-93.
https:// doi.org/ 10.1061/ (ASCE)0733-9437(2005)131:1(85).
20.French, A. N., Hunsaker, D. J., Sanchez, C. A., Saber, M., Gonzalez, J. R., & Anderson, R. (2020). Satellite-based NDVI crop coefficients and evapotranspiration with eddy covariance validation for multiple durum wheat fields in the US Southwest.
Agricultural Water Management, 239, 106266.
https:// doi.org/ 10.1016/ j.agwat.2020. 106266.
21.Allen, R., Pereira, L., Raes, D., & Smith, M. (1998). Crop evapotranspiration guidelines for computing crop requirements. FAO Irrig. Drain. Report modeling and application. J. Hydrol. 285, 19-40.
22.Bastiaanssen, W. G. M. (2000). SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of Hydrology, 229 (1), 87-100. https:// doi.org/ 10.1016/ S0022-1694 (99)00202-4.
23.Allen, R., Tasumi, M., Trezza, R., Bastiaanssen, W., & Waters, R. (2002). Surface Energy Balance Algorithms for Land. Advanced Training and User’s Manual-Idaho Implementation, Version 1.0, 97p.
24.Ghaemi., M., Raeini Sarjaz, M., & Mosavi, M. (2013). Estimating the crop coefficient and the water requirement of the Gascogne wheat by using energy balance method in Mashhad. Irrigation and Water Engineering, 3 (3), 58-68.
25.Zare khormizi, H., Tavili, A., & Ghafarian Malamiri, H. R. (2021). Estimation of Actual Evapotranspiration Using SEBAL Algorithm and Comparison with Improved FAO 56 Standard Evapotranspiration with KC-NDVI Relationship.
Iranian Journal of Remote Sensing & GIS, 13 (3), 73-92.
https:// doi.org/ 10.52547/ gisj.13.3.73. [In Persian]
26.Ghamarnia, H., & Rezvani, V. (2015). An Estimation of Evapotranspiration Using SEBAL Method and its Comparison with Penman-Montieth A Case Study of Bilevar Plain, Western Iran. International Journal of Water Resources Development, Vol. (III)– No. (01), 16–31.
27.Ghaderi, A., Dasineh, M., Shokri, M., & Abraham, J. (2020). Estimation of actual evapotranspiration using the remote sensing method and SEBAL algorithm: A case study in Ein Khosh Plain, Iran. Hydrology, 7 (2), 36.