بررسی رابطه شاخص دبی پایه با دما و بارندگی به روش موجک همدوس (مطالعه موردی: حوزه آبخیز گرگان‌رود)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 هیات علمی

2 استادیار دانشاه گنبد کاووس

3 استادیار گروه آبخیزداری دانشگاه گنبد کاووس

4 دانشجوی کارشناسی‌ارشد آبخیزداری دانشگاه گنبدکاووس

چکیده

تغییر اقلیم در نواحی مختلف دنیا باعث تغییر پارامترهای هواشناسی شده است. خشکسالی و کم‌آبی مشکلی است که ممکن است بسیاری از کشورها را دچار بحران نماید. بنابراین مطالعه تغییرات پارامترهای هواشناسی و تأثیر آن بر دبی رودخانه‌ها که عامل مهمی در تأمین نیازهای آبی می‌باشند حائز اهمیت است. هدف از این تحقیق بررسی ارتباط پارامترهای دما و بارندگی با شاخص دبی پایه در رودخانه گرگانرود با روش انتقال موجک پیوسته و همدوسی موجک می‌باشد. ابتدا دبی پایه با استفاده از روش دو پارامتره اکهارت تعیین و سپس شاخص دبی پایه محاسبه شد. شاخص دبی پایه نشان دهنده سهم آب‌های زیرزمینی در جریان سطحی رودخانه است که کمترین شاخص سالیانه مربوط به ایستگاه تقی‌آباد با مقدار 30/0 و بیشترین شاخص مربوط به ایستگاه تمر با مقدار 66/0 است. سپس رابطه درجه حرارت و بارندگی با شاخص دبی پایه شش ایستگاه (تمر، لزوره، نوده، ارازکوسه، سدگرگان و تقی آباد) واقع در حوزه آبخیز گرگان‌رود در یک دوره 33 ساله (1360 تا 1392) با روش انتقال موجک پیوسته و همدوسی موجک بررسی شد. تحلیل ارتباط داده‌های سالیانه دما و بارش بیانگر تأثیر دو پارامتر دما و بارش بر شاخص دبی پایه است. بررسی شدت همدوسی بین بارندگی و شاخص دبی پایه در ایستگاه‌های مورد مطالعه نشان داد بیشترین همبستگی در دوره‌های 1 تا 4 ساله وجود دارد که این همبستگی در سال‌های میانی ایستگاه‌های سد گرگان و تقی‌آباد غیر مستقیم و در سایر ایستگاه‌ها و سال‌های ابتدایی و انتهایی ایستگاه تقی‌آباد مستقیم است. در دوره‌های 4 تا 8 ساله نیز ارتباط و همبستگی‌هایی بین بارندگی و شاخص دبی پایه وجود دارد که در ایستگاه‌های لزوره و نوده مستقیم و ارازکوسه و تمر غیر مستقیم است. همچنین در دوره 8 تا 10 ساله بیشترین همبستگی در ایستگاه‌های ارازکوسه و نوده و با شدت کمتر در ایستگاه سدگرگان وجود دارد که جهت پیکان‌ها مستقیم بودن این ارتباط را نشان داد. تحلیل شدت همدوسی بین دما و شاخص دبی پایه نشان می‌دهد ارتباط و همبستگی‌های مستقیم و با شدت زیاد مربوط به ایستگاه‌های سدگرگان در سال‌های 1384 تا 1388 در دوره 3-4 ساله، لزوره در سال‌های 1381 تا 1385 با دوره بازگشت 4 ساله و تقی‌آباد در سال‌های 1363 تا 1368 با دوره بازگشت 1 تا 5 ساله است. همچنین همبستگی‌های غیر مستقیم مربوط به ایستگاه‌های نوده و تمر به ترتیب در سال‌های 1366 تا 1369 و 1390 تا 1392 با دوره بازگشت کوتاه مدت 2 و 3 ساله و ایستگاه تقی‌آباد در سال‌های 1372 تا 1379 و تمر 1371 تا 1392 با دوره بازگشت بلند مدت 8 تا 10 ساله است. با توجه به شرایط ایستگاه‌ها ممکن است ارتباط بارندگی با شاخص دبی پایه مستقیم و یا غیر مستقیم باشد. همچنین در بعضی از ایستگاه‌ها در دوره‌هایی رابطه مستقیم و در مابقی دوره رابطه عکس وجود دارد. ارتباط بین شاخص دبی پایه و دما نیز در بعضی از ایستگاه‌ها مستقیم و در برخی غیرمستقیم است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the relationship between base flow index with temperature and rainfall using wavelet coherence (Case study: Gorganroud watershed)

نویسندگان [English]

  • Hamed Rouhani 2
  • Masoomeh Farasati 3
  • Seyed Reza Hosseini 4
2 Assistant Professor in Watershed Management, Natural Resources Department, Faculty of Agriculture & Natural Resources, University of Gonbad, Gonbad
3 Assistant Professor in Watershed Management, Natural Resources Department, Faculty of Agriculture & Natural Resources, University of Gonbad, Gonbad
4 Graduate student, Natural Resources Department, Faculty of Agriculture & Natural Resources, University of Gonbad, Gonbad
چکیده [English]

Climate change has changed meteorological parameters in different parts of the world. Drought is a problem that may lead to crisis in many countries. Therefore, the study of meteorological parameters changes and their effect on river flow is important which an important factor in supplying water supply is. The purpose of this study was to investigate the relationship between temperature and rainfall parameters with base flow index using continuous wavelet transform and wavelet coherence in Gorganroud river. At first, the base flow was determined using Eckhart's two-parameter method and then the base flow index was calculated. The base flow index indicates the portion of groundwater in river surface flow, with lowest annual index in Taghiabad station with a value of 0.30 and the highest of its in Tamer station with a value of 0.66. Then, the annual trend of temperature and rainfall was investigated with base flow index of six stations (Tamer, Lazoreh, Nodeh, Arzakkuseh, Sedegorgan and Taghi Abad) in Gorganroud watershed during a period of 33 years (1981 to 2013) using continuous wavelet transform and wavelet Coherence. The analysis of annual temperature and precipitation trend with base flow index showed that two parameters of temperature and precipitation affect the base flow index. Investigation of Coherence intensity between rainfall and base flow index in stations showed that there is the highest correlation between 1-4 years, which indirect correlation was observed in the middle years of Sadegorgan and Taghiabad stations and direct in other stations and the early and the end years of Taqiabad station. There are also correlations between the rainfall and the base flow index in the 4-8 year period, which are direct in Lazooreh and Nodeh and indirect in Tamer stations. Also, in the period of 8 to 10 years, the most correlation was found in Arzokesh and Nodeh stations with less intensity in the Sadgegran station, which arrows direction indicated direct relationship. The analysis of the intensity of coherence between temperature and base flow index showed that direct and high intensity correlation in Sadgegorgan stations between 2005 to 2009 in 3-4 year period, Lazorah between 2002 to 2006 with 4 year period and Taghiabad between 1984 to 1989 with period of 1 to 5 years. Indirect correlations was found in Nodeh and Tamer stations between 1987 to 1990 and 2011 to 2013, respectively, with a short 2-year and 3-year period and Taqi-Abad stations between 1993 to 2000 and between 1992 to 2013 with a long-term period of 8 to 10 years. The rainfall relationship with the base flow index can be direct or indirect due to the condition of the stations. Also, in some stations there is a direct relationship in the periods and indirect relationship in the rest of the period. The relationship between the base flow index and temperature is also indirect in some of the stations.

کلیدواژه‌ها [English]

  • Base flow index
  • Continuous wavelet transform
  • Temperature
  • Wavelet Coherence
1.Aguiar-Conraria, L., Azevedo, N.,
and Soares, M.J. 2008. Using wavelets
to decompose the time- frequency
effects of monetary policy. Physica A:
Statistical Mechanics and its Applications.
387: 12. 2863-2878.
2.Ataee, H., and Fanayi, R. 2016.
Association of solar spots and minimum
temperature of Isfahan province.
Geography and Environmental Planning.
27: 2. 35-48. (In Persian)
3.Birsan, M.V., Zaharia, L., Chendes, V., and
Branescu, E. 2012. Recent trends in stream
flow in Romania (1976-2005). Romanian
Reports in Physics. 64: 1. 275-280.
4.Chen, F.Y., Jinge, W., Hsin, F.Y., and
Cheng, H.L. 2015. Spatial and Temporal
Streamflow Trends in Northern Taiwan.
Water, 7: 2. 634-651.
5.Chen, L.Q., Liu, C.M., Hao, F.H., Liu,
J.Y., and Dai, D. 2006. Change of the
Baseflow and It’s Impacting Factors in
the Source Regions of Yellow River. J.
Glaciol. Geocryol. 28: 2. 141-148.
6.Dams, J., Salvadore, E., Van Daele, T.,
Ntegeka, V., Willems, P., and Batelaan,
O. 2012. Spatio-temporal impact of
climate change on the groundwater
system. Hydrologucal Earth System
Sciences. 16: 5. 1517-1531.
7.Daubechies, I. 1990. The wavelet transform
time-frequency localization and signal
analysis. J. Inf. Theory. 36: 5. 961-1004.
8.Eckhardt, K. 2005. How to construct recursive
digital filters for baseflow separation.
Hydrological Procese. 19: 2. 507-515.
9.Eckhardt, K. 2008. A comparison of base
flow indices, which were calculated with
seven different base flow separation
methods. J. Hydrol. 352: 1-2. 168-173.
10.Fan, Y., Chen, Y., Liu, Y., and Li, W. 2013.
Variation of baseflows in the headstreams of
the Tarim River Basin during 1960-2007. J.
Hydrol. 487: 3. 98-108.
11.Farge, M. 1992. Wavelet transforms and
their applications to turbulence. J. Ann.
Rev. Fluid Mech. 24: 1. 395-457.
12.Ficklin, D.L., Robeson, S.M., and
Knouft, J.H. 2016. Impacts of recent
climate change on trends in baseflow and
stormflow in United Stateswatersheds,
Geophys. Res. Lett. 43: 10. 1002-1012.
13.Gan, R., Sun, L., and Luo, Y. 2015.
Baseflow characteristics in alpine rivers - A
mumulti-catchment analysis in Northwest
China. J. Moun. Sci. 12: 3. 614-625.
14.Ghanbarpur, M.R., Teymuri, M., and
Gholami, Sh.A. 2008. Comparison of
hydrograph separation methods (Case
study: Karun catchment). J. Agric. Sci.
Natur. Resour. 12: 44. 1-10. (In Persian)
15.Ghasmzadeh, M., Azad, N., and Sharghi,
A. 2016. Investigating the influence of
hydrocolimatological parameters of
Russian water level in Urmia Lake using
Wavelet Connection Criterion. J. Civil
Environ. Res. 2: 1. 37-50. (In Persian)
16.Gonzales, A.L., Nonner, J., Heijkers, J.,
and Uhlenbrook, S. 2009. Comparison
of different base flow separation
methods in a lowland catchment.
Hydrological Earth System Sciences.
13: 11. 2055-2068.
17.Gregor, M. 2010. User Manual "BFI+
3.0".
18.Grinsted, A., Moore, J.C., and Jevrejeva,
S. 2004. Application of the cross
wavelet transform and wavelet
coherence to geophysical time series.
Nonlinear processes in geophysics.
11: 5. 561-566.
19.Haeberli, W., Guodong, C., Gorbunov,
A.P., and Harris, S.A. 1993. Mountain
permafrost and climatic change. Permafrost
and Periglacial Processes. 4: 2. 165-174.
20.Hasani, M., Rahimi, M., Samee, M., and
Khamoushi, M.R. 2012. Study of
efficiency of various base flow
separation methods in arid and semi-arid
rivers (Case study: Hablehroud basin).
Arid Biom. Sci. Res. J. 2: 2. 275-287.
(In Persian)
21.Hodgkins, G.A., and Dudley, R.W. 2011.
Historical summer baseflow and
stormflow trends for New England Rivers.
Water Resources Research. 47: 7. 1-16.
22.Holman, I.P., Rivas-Casado, M.,
Bloomfield, J.P., and Gurdak, J.J. 2011.
Identifying non-stationary groundwater
level response to North Atlantic oceanatmosphere teleconnection patterns
using wavelet coherence. Hydrogeol. J.
19: 6. 1269-1278.
23.Jiang, T., Su, B., and Hartmann, H.
2007. Temporal and spatial trends of
precipitation and river flow in the
Yangtze River Basin, 1961-2000.
Geomorphology 85: 3-4. 143-154.
24.Kahya, E., and Kalayci, S. 2004. Trend
analysis of stream flow in Turkey. J.
Hydrol. 289: 1-4. 128-144.
25.Khorshiddost, A.M., Rezaei Banafsheh,
M., Mir Hashemi, H., and Kakolvand,
Y. 2015. Investigation of the process of
rainfall-discharge changes in the
sub basins of Karkheh river using
non-parametric methods Case study:
Kashkan Basin. Science and Engineering
of Irrigation 38: 4. 177-188. (In Persian)
26.Kumar, S., Merwad, V., Kam, J., and
K., Thurner. 2009. Stream flow trends
in Indiana: Effects of long term
persistence, precipitation and subsurface
drains. J. Hydrol. 374: 1-2. 171-183.
27.Liang, L., and Liu, Q. 2014. Streamflow
sensitivity analysis to climate change
for a large water-limited basin.
Hydrological Process 28: 4. 1767-1774.
28.Longobardi, A., and Villani, P.
2008. Baseflow index regionalization
analysis in a Mediterranean area and
data scarcity context: Role of the
catchment permeability index. J. Hydrol.
355: 1-4. 63-75.
29.Lyon, S.W., and Destouni, G. 2010.
Changes in catchment-scale recession
flow properties in response to permafrost
thawing in the Yukon River Basin. Inter.
J. Climatol. 30: 14. 2138-2145.
30.Mehmet, O., Ashok, K., Mishra, V.,
and Singh, P. 2010. Scaling
characteristics of precipitation data in
conjunction with wavelet analysis. J.
Hydrol. 395: 3-4. 279-288.
31.Mwakalila, S., Feyen, J., and Wyseureb,
G. 2002. The influence of physical
catchment propertieson baseflow in
semi-arid environments. J. Arid Environ.
52: 2. 245-258.
32.Nademi, Y., and Khochiani, R. 2017.
Interaction of Stock, Currency and Gold
Markets in Iran: An Economic Physics
Analysis. Magazine of Finance and
Management of Bonds. 31: 2. 149-166.
(In Persian)
33.Nader Sefat, M.H., and Saidian, F. 2010.
Study of Flooding Process in Watershed
Areas by Investigating the Permeability
and Potential of Runoff in Geological
Formations, Case study in Kardeh
Watershed - Razavi Khorasan Province.
Geograph. Res. Quar. J. 4: 12. 198-163.
(In Persian)
34.Nathan, R.J., and McMahon, T.A. 1990.
Evaluation of automated techniques for
base flow and recession analyses. Water
Resource Researchs. 26: 7. 1465-1473.
35.Nicholls, R.J., and Cazenave, A. 2010.
Sea-level rise and its impact on coastal
zones. Science. 328: 5985. 1517-1520.
36.Obrien, R.J., Misstear, B.D., Gill, L.W.,
Deakin J.L., and Flynn, R. 2013.
Developing an integrated hydrograph
separation and lumped modeling
approach to quantifying hydrological
pathways in Irish river catchments.
J. Hydrol. 486: 12. 259-270.
37.Percival, D.B., and Walden, A.T. 2000.
Wavelet methods for time series
analysis. Cambridge University Press,
Cambridge, 594p.
38.Qin, J., Ding, Y., Han, T., and Liu, Y. 2017.
Identification of the Factors Influencing the
Baseflow in the Permafrost Region of the
Northeastern Qinghai-Tibet Plateau. Water.
9: 10. 666-682.
39.Rahimi, L., Dehghani, A.A., Ghorbani,
Kh., and Abdolhosseini, M. 2014. Study
of changes in total flow rate and flow
rate at the base of the hydrometric
station of Erzakoush (Gorgan-e-Rud
watershed in Golestan province).
J. Water Soil Cons. 21: 2. 173-189.
(In Persian)
40.Rogger, M., Chirico, G.B., Hausmann,
H., Krainer, K., Bruckl, E., Stadler, P.,
and Bloschl, G. 2017. Impact of
mountain permafrost on flow path and
runoff response in a high alpine
catchment. Water Resources Research
53: 2. 1288-1308.
41.Sheikh, V.B., Bahremand, A., and
Mooshakhian, Y. 2011. A comparison of
trends in hydrologic variables in the
Atrak River basin using non-parametric
trend analysis tests. J. Water Soil Cons.
18: 2. 1-23. (In Persian)
42.Sheng, Y., Li, J., and Wu, J.C. 2010.
Distribution patterns of permafrost in the
upper area of Shule River with the
application of GIS technique. J. China
Univ. Min. Technol. 39: 3. 32-39.
43.Strauch, A.M., MacKenzie, R.A.,
and Tingley, R.W. 2017. Base flow
driven shifts in tropical stream
temperature regimes across a mean
annual rainfall gradient. Hydrological
Processes. 31: 10. 1678-1689.
44.Taormina, R., Chau, K.W., and
Sivakumar, B. 2015. Neural network river
forecasting through baseflow separation
and binary-coded swarm optimization. J.
Hydrol. 529: 3. 1788-1797.
45.Teymuri, M. 2014. Evaluation of base
discharge separation methods based on
the analysis of deformation branch.
Geograph. Res. Quar. J. 29: 4. 57-66.
(In Persian)
46.Teymuri, M., Ghanbarpur, M.R., Bashir
Gonbad, M., Zolfaqari, M., and Kazemi
Nia, S. 2011. Comparison of base flow
index in hydrograph separation methods in
some river of west Azarbayjan province.
J. Water Soil Sci. 15: 57. 219-228.
(In Persian)
47.Torrence, C., and Webster, P.J. 1999.
Interdecadal changes in the enso-monsoon
system. J. Clim. 12: 8. 2679-2690.
48.Torrence, C., and Compo, G.P.
1998. A practical guide to wavelet
analysis. American Meteorological Society.
79: 1. 61-78.