بررسی روند نوسانات مکانی-زمانی سطح ایستابی آب‌های زیرزمینی به روش ماشین بردارپشتیبان(SVM) و کریجینگ(kriging) (مطالعه موردی دشت سیلاخور)

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 استادیار دانشگاه آیت الله العظمی بروجردی(ره)

2 دانشجوی مهندسی عمران دانشگاه حضرت آیت الله العظمی بروجردی(ره)

3 کارشناس ارشد منابع آب، اداره آب شهر بروجرد

چکیده

از آنجا که منابع آب زیرزمینی از منابع آبی مهم و همچنین رو به کاهش می‌باشد مطالعه و مدل سازی مناسب برای بهره‌برداری از آن حایز اهمیت است. ارزیابی و پیش بینی تراز آب زیرزمینی به پیش بینی منابع آب زیرزمینی کمک می‌کند. امروزه استفاده از روش‌های هوش مصنوعی بر پایه تئوری داده‌کاوی برای پیش‌بینی نوسانات سطح ایستابی استفاده می‌شود. در این میان روش ماشین‌‌بردارپشتیبان در بین روش‌های هوش مصنوعی و روش کریجینگ در بین روش‌های زمین‌آماری دارای دقت قابل ملاحظه-ای به ترتیب در پیش‌‌بینی زمانی و مکانی تراز سطح ایستابی می‌باشد. در این پژوهش از مدل ترکیبی ماشین‌بردار‌پشتیبان و کریجینگ به عنوان روشی نوین برای پیش‌بینی زمانی و مکانی نوسانات سطح ایستابی در محدوده دشت سیلاخور استفاده شده است. در مرحله اول، مدل‌سازی زمانی با استفاده از مدل ماشین‌بردار‌پشتیبان از داده‌های 11 چاه پیزومتری موجود در منطقه به روش ماشین‌بردار‌پشتیبان صورت پذیرفت و در مرحله دوم برای پیش‌بینی مکانی از داده‌های ماهانه خروجی مرحله اول به عنوان ورودی مدل زمین‌آمار استفاده گردید. داده‌های 11 چاه مشاهداتی در دشت سیلاخور پس از جمع‌آوری در بازه ده ساله اخیر در دو حالت نرمال و غیرنرمال به عنوان ورودی مدل SVM مورد استفاده قرار گرفتند. با استفاده از نرم‌افزار Matlab الگوریتم تابع ماشین‌بردارپشتیبان بگونه‌ای تنظیم شد که در هر مرحله داده‌های یک چاه به عنوان ورودی این مدل باشد. تراز آب در این روش برای زمان 1+t پیش‌بینی خواهد شد. پیش‌بینی مکانی داده ها در نرم افزازArcGIS و در بخش Geostatical Analys به روش کریجینگ مدلسازی گردید. برای ترازیابی در این بخش، جدول(1) به عنوان ورودی مورد استفاده قرار می‌گیرد. مطلق بودن تخمین در درونیابی و مکانیابی از ویژگی‌های عمده مدل کریجینگ می‌باشد. بدین مفهوم که مقدار تخمین کمیت در نقاط نمونه‌برداری با مقدار اندازه‌گیری شده برابر می‌باشد و واریانس تخمین صفر می‌گردد. این ویژگی سبب می‌گردد که تخمین‌گر کریجینگ در رسم خطوط همتراز از حداکثر نقاط نمونه‌برداری عبور نموده و تمایلی به بسته شدن و دور زدن را نداشته باشد و از مرز محدوده مورد مطالعه فراتر رود. در واقع این مدل برای تخمین نقاط مجهول مقدار واریانس را به حداقل می‌رساند. بنابراین منحنی های میزان بر اساس روندیابی ترسیم می‌گردند و در نتیجه از مرز محدوده ترسیم فراتر می‌روند. نتایج به دست آمده از پژوهش بیانگر آن است که این مدل ترکیبی می‌تواند به طور موفقیت‌آمیزی برای پیش‌بینی نوسانات سطح ایستابی مورد استفاده قرار گیرند. در بهترین حالت اجرای مدل، بالاترین ضریب تبیین برای چاه‌های چغادون(96/0=DC)، کارخانه قند(94/0=DC) و ولیان(93/0=DC) محاسبه شد که نشان دهنده دقت مناسب مدل ترکیبی در پیش ‌بینی تراز آب زیرزمینی می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Studying the process of space-time ground water level by support vector machine and Kriging Method in GIS (case study: silakhor plain)

نویسندگان [English]

  • Mehdi Komasi 1
  • Hesam Goudarzi 2
  • Amin Behniya 3
2 civil engineering, broujerd
چکیده [English]

Since ground water and dwindling water resources is important for the operation of research and modeling is important. Assessment and prediction of groundwater level to help predict groundwater resources. The use of artificial intelligence methods based on the theory of data mining is used to predict the water table fluctuation. The support vector machine in artificial intelligence methods and the methods of geostatistical Kriging method has considerable precision in order to predict the time and location of the water table is level. In this study, the combination of support vector machine and Kriging model as a new way to predict when and where water table fluctuation in the plain area Silakhor is used. In the first phase, modeling when using support vector machine model data 11 piezometric wells in the region were carried out using support vector machine and secondly to predict the location of monthly data output of the first stage as an input earth model Statistics were used.
Data of 11 observation wells in the Silakhor plain data collected in the course of the past ten years in both normal and abnormal SVM model were used as input. Using the software Matlab function algorithm support vector machine was configured as an input at each stage of a well is this model. In addition, the maximum error in the calculation of the wells with 0.2 Keyvareh is due to lack of observation data in interval or lack of access to the region is to read water level. Absolute estimation interpolation and location estimate is a major feature. This means that estimates the quantity of sampling points is equal to the measured value and variance estimate is zero. In fact this model to estimate the amount of variance minimizes unknowns. Thus, the curves are drawn based routing and thus go beyond the boundary drawn. This feature makes the model the spatial distribution of data which are dependent on terrain, Kriging in calculations of high accuracy. Locate underground water level role in reducing the cost of drilling a well in the region. This way you can reach the height of water to be achieved in the region or even decline or rise of water table revealed
The ability of Support Vector Machine, and of course, a relatively new as a useful tool in water resource management to predict fluctuations in groundwater levels were evaluated in Silakhor plain. According to the accuracy of this method in predicting groundwater level can be comprehensive and appropriate program management discussion groundwater resources to be expected. In this study, using geostatistical methods in the area of water resources in plain Silakhor predicted with high accuracy are discussed. The most important issue in the analysis of spatial-temporal data to determine the dependence structure of the data. Whatever the choice of models and model are more accurate, the prediction will be more accurate. In terms of predicting when it should be noted that the time for the distance away from the last viewing time predicted prediction accuracy will be reduced. According to the study area in the last ten years has been well observed that in the best case scenarios predicted by the model, the highest coefficient of determination for wells Chughadun (DC = 0/96), sugar (DC = 0 / 94) and Valian (DC = 0/93) was calculated, which represents a hybrid model to predict groundwater level is the wells could be decided.

کلیدواژه‌ها [English]

  • groundwater level
  • Kriging
  • Silakhor plain
  • Mashyn‌Brdar‌Pshtyban
  • predict space-time
1.Ahmadi, M., and Baghbanzade Dezfouli A. 2012. A Geo-statistical Approach to the
change procedure study of Under-Groundwater Table in a GIS framework, Case study:
Razan–Ghahavand plain, Hamadan province, Iran. J. Acad. Appl. Stud. 2: 11. 56-69.
2.Amiri Deh Ahmadi, F., and Hesami Kermani, M. 2011. Estimation of groundwater levels with
the use of artificial intelligence, the first National Conference of water and wastewater. Iran,
Tehran. (In Persian)
3.Bameri, A., and Piri, H. 2015. Assessment Of Groundwater Pollution In Bajestan Plains
For Agricultural Purposes Using Indicator Kriging, J. Water Soil Cons. 22: 1. 211-229.
(In Persian)
4.Bashi-Azghadi, S.N., and Kerachian, R. 2010. Locating monitoring wells in groundwater
systems using embedded optimization and simulation models. Science of the Total
Environment. 408: 2189-2198.
5.Ben-Jemaa F., and Marino, M.A. 1990. Optimization of a groundwater well monitoring
network. International Conference on Optimizing the Resources for Water Management,
Forth worth, Texas, April 17-21, Pp: 610-615.
6.Bhat, S., Motz, L., Pathka, C., and Kuebler, L. 2012. Designing Groundwater Level
Monitoring Network Using Geostatistical A Case Study and Central Florida U.S.A. World
Environmental and Water Resources Congress, Pp: 48-58.
7.Delbari, M., Afrasyab, P., and Miremadi, S. 2010. Investigation spatial- temporal fluctuation
ground water analysis of salinity (Case study: Mazandaran). Iran. J. Irrig. Drain. 3: 7. 359-374.
(In Persian)
8.Dibike, Y.B., Velickov, S., Solomatine, D., and Abbott, M.B., 2001. Model induction with
support vector machines: Introduction and applications. J. Com. Civil Engin. 15: 3. 208-216.
9.Guo, Y., Wang, J., and Yin, X., 2011. Optimizing the ground water monitoring network using
MSN Theory. J. Proc. Soc. Behav. Sci. 21: 240-242.
10.Liu, D., Wang, Z., Zhang, B., Song, K., Li, X., and Li, J. 2006. Spatial distribution of soil
organic carbon and analysis of related factors in croplands of the black soil region, northeast
China. Agricultural Ecosystems and Environment. 113: 73-81.
11.Mohammadi, S., Salajegheh, A., Mahdavi, M., and Bagheri, R. 2012. An investigation on
spatial and temporal variations of groundwater level in Kerman plain using suitable
geostatistical method (During a 10-year period), Iran. J. Range. Des. Res. 19: 1. 60-71.
(In Persian)
12.Najafi, S. 2010. The evaluation methods of interpolation to determine the underground water
level of the Urmia Lake. National Conference on comprehensive management of water
resources, Kerman, Iran. (In Persian)
13.Nourani, V., and Ejlali, R. 2012. Quantity and Quality Modeling of Groundwater
by Conjugation of ANN and Co-Kriging Approaches. J. Water Resour. Manage. Model.
19: 1. 287-310.
14.Panda, D.K., Mishra, A., Jena, S.K., James, B.K., and Kumar, A. 2007. The influence
of drought and anthropogenic effects on groundwater levels in Orissa, India. J. Hydrol.
343: 140-153.
15.Rajaee, T., and Zeynivand, A. 2015. Modeling of Groundwater Level using ANN–Wavelet
Hybrid Model (Case study: Sharif Abad Plain), J. Civil Environ. Engin. 44: 77. 51-63.
(In Persian)
16.Rezaee, E., Khashei-Siuki, A., and Shahidi, A. 2015. Design of Groundwater Level
Monitoring Network, Using the Model of Least Squares Support Vector Machine
(LS-SVM). Iran. J. Soil Water Res. 45: 4. 389-396. (In Persian)
17.Rezaee, E., Khashei-Siuki, A., Shahidi, A., and Riahi-Madvar, H. 2014. Application of
Least Squares Support Vector Machine Model For Water Table Simulation (Case study:
Ramhormoz plain). Iran. J. Irrig. Drain. 4: 7. 510-520. (In Persian)
18.Salari, M., Zareie, H., and Taghyan, M. 2009. Application and evaluation of the Kriging
and Cokriging methods in the calculation of water level the water level in the lowland.
National Conference on the effects of the drought and management solution. Isfahan, Iran.
(In Persian)
19.Zhou, Y., Dong, D., Lio, J., and Li, W. 2013. Upgrading a regional groundwater level
monitoring network for Beijing Plain, China. J. Geosci. Front. 4: 127-138.