ارائه پروتکل محاسباتی و شبیه‌سازی برای پایش مخازن کربن آلی خاک (مطالعه موردی: پارک جنگلی نور)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 مؤسسه تحقیقات جنگلها و مراتع کشور، تهران

2 دانشگاه آزاد علوم و تحقیقات تهران

چکیده

سابقه و هدف: با توجه به سناریوی گرمایش زمین به عنوان بزرگترین چالش زیست‌محیطی عصر حاضر و اهمیت حفاظت و انباشت هر چه بیشتر موجودی کربن در خاک در قالب بزرگترین مخازن کربن اتمسفری در زمین، پایش بهینه مخازن کربن آلی خاک در بوم‌سازگان‌های جنگلی می‌تواند ابزاری مناسب برای بررسی تغییرات پارامترهای اقلیمی در منطقه علاوه بر مدیریت حفاظتی بهینه بوم‌سازگان‌های مذکور در رابطه با روند تغییرات ذخایر کربن خاک و چرخش کربن محسوب شود. از این‌رو، یک پروتکل جامع با قابلیت اطمینان زیاد برای ایجاد مدل‌های پیش‌بینی ذخایر کربن آلی خاک با حداکثر دقت باید ارائه شود، طوری‌که با استفاده از مدل‌های مزبور شامل متغیرهای توصیفی با قابلیت اندازه‌گیری آسان با حداقل هزینه بتوان کنترل حفاظتی متناسب در رابطه با تغییرات مقادیر ترسیب کربن در سطوح مختلف لایه‌های خاک انجام داد.
مواد و روش: پژوهش حاضر در پارک جنگلی نور که به عنوان بزرگترین جنگل‌های جلگه‌ای شمال کشور محسوب می‌شود صورت گرفت. برای انجام پایش بهینه مخازن کربن آلی خاک در جنگل مذکور، 25 قطعه‌نمونه 400 متر مربعی با طرح بلوک تصادفی در توده‌های توسکا – انجیلی، پلت – انجیلی و اوجا – ممرز برای اندازه‌گیری مشخصه‌های کمی به‌منظور محاسبه شاخص‌های تنوع زیستی و فاکتور کربن خاک (در دو عمق 20- 0 و 40 – 20 سانتی‌متر) پیاده‌سازی شد. روش‌های محاسباتی تحلیل رگرسیون و تکنیک شبیه‌سازی با استفاده از شبکه عصبی مصنوعی برای انجام مطالعه حاضر استفاده شدند. برای تحلیل‌های محاسباتی از روش‌های سنتی مبتنی بر رگرسیون به روش تخمین منحنی و رگرسیون خطی چندگانه و برای پیشبرد تحلیل‌های شبکه عصبی مصنوعی از الگوریتم پس‌انتشار خطا با ساختار پروسپترون چند لایه استفاده شد.
یافته‌ها: نتایج نشان داد که رگرسیون خطی چندگانه شامل شاخص‌های همبسته تنوع زیستی به عنوان عوامل توصیفی بر مبنای شاخص‌های اعتبارسنجی از جمله ضریب اطلاعات آکاییک و فاکتور تورم واریانس ( ) دارای اعتبار محاسباتی بوده ولی دارای دقت قابل ملاحظه‌ای نمی‌باشد. در تحلیل‌ غیرخطی، مدل کرو بر حسب وفور پوشش علفی مدل بهینه ذخایر کربن لایه آلی خاک و مدل توانی تبدیلی لگاریتمی ( ) شامل غلبه گونه‌ای درختی (D)، وفور (Abunance) و یکنواختی (J') پوشش علفی بهترین مدل لایه معدنی خاک محسوب شدند. تکنیک شبیه‌سازی نشان داد که در الگوریتم پس‌انتشار خطا، خروجی بهینه لایه آلی خاک با ماتریس ورودی‌ Abundance و J' با توپولوژی یک لایه پنهان و 15 نورون حاوی تابع Tan-sigmoid و خروجی بهینه لایه معدنی خاک با اضافه شدن لایه D به ماتریس مزبور با معماری دولایه پنهان و 35 نورون دارای حداکثر قطعیت پیش‌بینی نسبت به کلیه تحلیل‌های رگرسیون هستند.
نتیجه‌گیری: نوع روابط ریاضی (ساختار تابع) بین شاخص‌های تنوع زیستی و متغیر پاسخ مورد مطالعه صرفنظر از قطعیت ارتباط اکولوژیکی و بیولوژیکی بین آنها دارای قطعیت کم و محدودیت‌های تحلیلی و آماری زیاد از جمله وجود فاکتور تورم واریانس است. از این‌رو، کاربرد تکنیک شبکه عصبی مصنوعی می‌تواند بهترین جایگزین مدل‌های کلاسیک برای پیش‌بینی مقادیر مذکور باشند. در این خصوص، همانند پارامترهای محاسباتی مدل‌های کلاسیک، توپولوژی هر مدل در شبکه عصبی مصنوعی تعیین کننده معماری و کارآیی (دقت) پایش مقادیر ترسیب کربن در لایه‌های مختلف خاک می‌باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Providing mathematical and simulating protocol for optimum monitoring of soil carbon pools (Case study: Nour Forest Park)

چکیده [English]

Background and objectives: Considering global warming as a prominent challenge in the world and based on increase and protection of soil carbon stock in forest ecosystems, optimal monitoring carbon sequestration in Forests is very efficient to verify its sustainability and climate change. Therefore, a comprehensive protocol is needed for developing models with high certainty in relation to soil organic carbon (SOC) stock. Furthermore, using the models including explanatory variables attributed by easy measurement capabilities and the lowest cost is conducted to properly protective control in association with variation of carbon sequestration in different soil layers.
Materials and methods: This research was conducted in Nour Forest Park as a largest plain forest in north of Iran. The number of 25 plots with 400 m2 was placed in the three stands (Alder- Ironwood, Maple- ironwood, Elm- Hornbeam) based on randomized block design sampling to measure plants biodiversity and soil carbon factor. Regression analysis and simulating by ANN was used to monitor soil carbon pool optimally.
Results: The results showed that multiple linear regression including correlated indices based on validation parameters such as Akaike information coefficient and variance inflation factor (VIF < 10) were valid to estimate the SOC stock; however, there was found no considerable accuracy. Pertaining to non-linear regression analysis, S-curve model including Abundance of herbal species was the best predictor to SOC in the organic layer and log-transformed power model (CF = 1.00) including species dominance (D) of trees, Abundance of and evenness (J') of grasses was the highest accurate model to predict SOC in the mineral layer. After back propagation algorithm in the neural network, SOC stock was predicted well through input matrix of Abundance and J' with topology of one hidden layer and 15 neurons including function of Tan-sigmoid. Furthermore, SOC stock in the mineral layer was predicted with the highest accuracy by adding layer of D to the prior matrix in the network having architecture of two hidden layers and 35 neurons in each layer.
Conclusion: Irrespective of ecological and biological interpretations, an accurate type of mathematic relationship (Function) between plant biodiversity indices and the response variable is dubious with low certainty and statistical issues such as variance inflation factor. Hence, ANN application can be a best alternative to traditional models for the response variables. Subsequently, like the parameters in the traditional models, the topology of each model in ANN is determining the architecture and efficiency of monitoring the responses in different soil layers.

کلیدواژه‌ها [English]

  • carbon sequestration
  • Plant biodiversity
  • regression analysis
  • Artificial neural network
1.Alijanpour Shalmani, A., Shabanpour, M., Asadi, H., and Bagheri, F. 2011. Estimation of soil
aggregate stability in forests soils of Guilan province by artificial neural networks and
regression pedotransfer functions. Water and Soil Science. 3: 153-162. (In Persian)
2.Bakhshi, H., Namiranian, M., Makhdoom, M., and Zahedi, G.H. 2013. Application of fuzzy
modeling to assess the impacts of recreation on bulk density as a physical factor (Case study:
Nour Forest Park). Iran. J. For. 5: 11-9. (In Persian)
3.Bihamta, M.R., and Chahouki, M.A. 2011. Principle of Statistic for the Natural Resources
Science. University of Tehran Press, 3rd Edition, 300p. (In Persian)
4.Foody, G.M., Boyd, D.S., and Cutler, M.E.J. 2003. Predictive relations of tropical forest
biomass from Landsat TM data and their transferability between regions. Remote Sensing of
Environment. 85: 463-474.
5.Hagan, M.T., Dcmuth, H.B., and Beale, M. 1996. Neural Network design, PWS publishing co,
United States of America.
6.Haykin, S. 2008. Neural Networks and learning machines, third edition, Pearson Education,
906p.
7.Hollingsworth, T.N., Schuur, E.A.G., Schuur, F.S., and Walker, M.D. 2008. Plant Community
Composition as a Predictor of Regional Soil Carbon Storage in Alaskan Boreal Black Spruce
Ecosystems. Ecosystems. 4: 629-642.
8.Jandl, R., Lindner, M., Vesterdal, L., Bauwens, B., Baritz, R., Hagedorn, F., Johnson, D.W.,
Minkkinen, K., and Byrne, K.A. 2007. How strongly can forest management influence soil
carbon sequestration? Geoderma. 137: 253-268.
9.Jimenez, J.J., Lal, R., Leblanc, H.A., and Russo, R.O. 2007. Soil organic carbon pool under
native tree plantations in the Caribbean lowlands of Costa Rica. Forest Ecology and
Management. 241: 134-144.
10.Kashi, H., Ghorbani, H., Emamgholizadeh, S., and Hashemi, S.A.A. 2013. The Estimation of
Soil Cation Exchange Capacity in Disturbed and Undisturbed Soils Using Artificial Neural
Networks and Multiple Regressions. J. Water Soil. 3: 472-484.
11.Kirby, K.R., and Potvin, C. 2007. Variation in carbon storage among tree species:
Implications for the management of a small-scale carbon sink project. Forest Ecology and
Management. 246: 208-221.
12.Mahmoudi, J. 2007. The study of species diversity in plant ecological groups in kelarabad
protected forest. Iran. J. Biol. 4: 353-362. (In Persian)
13.Mesdaghi, M. 2006. Plant Ecology. Publication SID-Mashhad. 187p. (In Persian)
14.Moghimi, S., Parvizi, Y., Mahdian, H.M., and Masihabadi, M.H. 2015. Comparison of
applying multi linear regression analysis and artificial neural network methods for simulating
topographic factors effect on soil organic carbon. Watershed Engineering and Management.
4: 312-322. (In Persian)
15.Nave, L.E., Vance, E.D., Swanston, C.W., and Curtis, P.S. 2010. Harvest impacts on soil
carbon storage in temperate forests. Forest Ecology and Management. 259: 857-866.
16.Naghdi, R., and Ghajar, I. 2012. Application of Artificial Neural Network in the Modeling of
Skidding Time Prediction. Advanced Materials Research. 3: 3538-3543.
17.Peltoniemi, M., Thürig, E., Ogle, S., Palosuo, T., Schrumpf, M., Wutzler, T., ButterbachBahl, K., Chertov, O., Komarov, A., Mikhailov, A., Gärdenäs, A., Perry, C., Liski, J., Smith,
P., and Mäkipää, R. 2007. Models in country scale carbon accounting of forest soils. Silva
Fennica. 3: 575-602.
18.Sarmadian, F., Taghi-ZadehvMehrjerdi, R., Mohamad-Asgari, H., and Akbarzadeh, A. 2011.
Comparison of Neuro-Fuzzy, Artificial Neural Network and Multivariate Regression for
Prediction of some Soil Properties (Case Study: Golestan Province). Iran. J. Soil Water Res.
2: 211-220. (In Persian)
19.Tiryaki, S., and Aydin, A. 2014. An artificial neural network model for predicting
compression strength of heat treated woods and comparison with a multiple linear regression
model. Construction and Building Materials. 62: 102-108.
20.Toth, T., Schaap, M.G., and Molnar, Z. 2008. Utilization of soil–plant interrelations through
the use of multiple regression and artificial neural network in order to predict soil properties
in hungrian solonetzic grasslands. Cereal Research Communications. 36: 1447-1450.
21.Walkley, A., and Black, I.A. 1934. Estimation of soil organic carbon by the chromic acid
titration method. Soil Sci. 37: 29-38.
22.Zhu, B., Wang, X., Fang, W., Piao, S., Shen, H., Zhao, S., and Peng, C. 2010. Altitudinal
changes in carbon storage of temperate forests on Mt Changbai, Northeast China. J. Plant
Res. 123: 439-452.