تخمین حجم آب ذخیره شده در مخزن سدها با استفاده از تصاویر ماهواره ای و روش رگرسیون خطی چندمتغیره

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی‌ارشد علوم و مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

2 نویسنده مسئول، دانشیار گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

3 دانشیار گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

چکیده

سابقه و هدف
منابع آب همواره به عنوان یکی از مسائل حیاتی زندگی بشر مطرح بوده است.‌ یکی از مهم‌ترین منابع تامین آب، مخازن سدها می‌باشند که اطلاع از مقدار آب ذخیره شده در آن‌ها حائز اهمیت می‌باشد و برآورد دقیق‌تر آن برای استفاده بهینه و برنامه‌ریزی شده از این ذخایر باارزش، امری ضروری است. روش معمول برای تعیین حجم آب ذخیره شده در مخازن، استفاده از تراز سطح آب (اشل) و منحنی حجم-ارتفاع مخزن است. تغییر منحنی حجم-ارتفاع مخزن بر اثر عواملی مثل سیلاب‌ها باعث می‌شود که استفاده مجدد از آن نیازمند تصحیح منحنی اولیه باشد که با صرف هزینه و زمان زیاد همراه است. در این پژوهش یک روش جدید برای تخمین حجم آب ذخیره شده در مخزن سد با استفاده از ارتباط بین تصاویر ماهواره‌ای و عمق آب ارائه شده است تا علاوه بر صرفه‌جویی در هزینه‌ها بتوان مدیریت منابع آبی را بهبود بخشید.

مواد و روش‌ها
به منظور تخمین حجم آب ذخیره شده در مخزن سد با استفاده از عمق‌سنجی آب به روش سنجش از دور، ابتدا تصاویر ماهواره‌ Landsat8 OLI مربوط به مخزن سد زوجار (با حداکثر ظرفیت ذخیره‌ 2/3 میلیاردمترمکعب) واقع در کشور اسپانیا دانلود و پس از اعمال تصحیحات رادیومتریکی، باندها و شاخص‌های طیفی مربوط به پیکسل‌های مختلف تصویر استخراج شد. به دلیل حجم بسیار بالای ماتریس داده‌های ورودی، مدل‌سازی و استخراج معادله رگرسیون خطی چندمتغیره مسئله‌ای زمانبر و طولانی است. برای کاهش تعداد داده‌‌ها و افزایش سرعت انجام محاسبات، یک کد در محیط نرم ‌افزار Matlab نوشته شد و سپس داده‌‌های جدید برای مدل-سازی به روش رگرسیون خطی به نرم ‌افزار Minitab معرفی شدند. عمق‌های آب واقعی تهیه شده از پایگاه داده DAHITI به عنوان متغیر‌های ورودی وابسته و باندها و شاخص‌های طیفی به عنوان متغیرهای ورودی مستقل برای برازش معادله رگرسیون خطی چند‌متغیره استفاده شدند.
یافته‌ها
نتایج حاصل از معادله عمق‌سنجی آب در سه زمان مختلف با فاصله‌ زمانی مناسب (سال‌های 2013، 2019 و 2020) نشان داد که کمترین و بیشترین مقدار RMSE در محاسبه‌ عمق آب به ‌ترتیب 00/1 و 35/1 متر و میانگین آن 2/1 متر می‌باشد. همچنین کمترین و بیشترین خطای تخمین حجم آب به‌ترتیب 88/3 و 85/14 درصد و میانگین آن برای سه زمان مورد بررسی 25/9 درصد بدست آمد. با توجه به اینکه در طول این مدت (از سال 2013 تا سال 2020)، کمترین و بیشترین عمق آب مشاهداتی به ترتیب 5/16و 5/39 متر می‌باشند نتایج بدست آمده از دقت قابل قبولی برخوردار است. بررسی‌ها نشان داد که در عمق‌سنجی ماهواره‌ای از میان متغیر-های ورودی شاخص‌ طیفی آب تفاضلی نرمال‌شده NDWI و باند‌ مادون قرمز نزدیک NIR به ترتیب با ضرائب تبیین 94/0 و 85/0 بیشترین ارتباط معنادار را با تغییرات عمق آب دارند.
نتیجه‌گیری
نتایج بدست آمده نشان داد که می‌توان بین عمق آب واقعی و باندهای طیفی استخراج شده از تصاویر ماهواره‌ای تا اعماق حدود 40‌ متر رابطه‌ای به شکل رگرسیون خطی چند‌‌متغیره نوشت که علاوه بر دقت در عمق‌سنجی آب از دقت قابل قبولی در تخمین حجم آب ذخیره شده در مخزن نیز برخوردار باشد تا با بهبود و ارتقا آن بتوان حجم آب مخازن را در بازه‌های زمانی طولانی برآورد کرد.
کلمات کلیدی: عمق‌سنجی‌ آب، حجم ذخیره آب، تصاویر ماهواره‌ای، سد زوجار، رگرسیون خطی چند‌متغیره، پایگاه داده DAHITI

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of stored water volume in reservoir dams using satellite images and multi-variable linear regression model

نویسندگان [English]

  • Hamed Feizabady 1
  • Abdolreza Zahiri 2
  • Khalil Ghorbani 3
1 M.Sc. Student in Water Sciences and Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 Corresponding Author, Associate Prof., Dept. of Water Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
3 Associate Prof., Dept. of Water Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
چکیده [English]

Background and Objective
Water resources have always been a critical issue in human life. Reservoirs, as one of the key water sources, require accurate assessment of their stored water volume for optimal utilization and planned management. Traditional methods for determining water volume, relying on water surface elevation and the volume-depth curve, often necessitate costly and time-consuming corrections due to factors such as floods. This research proposes a new approach to estimate the volume of water stored in a dam reservoir using the relationship between satellite images and water depth, aiming to enhance water resource management efficiency and cost-effectiveness.


Materials and Methods
To estimate the stored water volume in the Zujar dam reservoir (with a maximum storage capacity of 3.2 billion cubic meters) using remote sensing based on the water depth estimation, Landsat8 OLI satellite images were downloaded. After applying radiometric corrections, bands and spectral indices related to different pixels of the image were extracted. Due to the huge input data matrix and the time-consuming nature of multivariate linear regression modeling, a code was developed in MATLAB. The new dataset was then introduced to the Minitab software for linear regression equation fitting. Measured water depths from the DAHITI database were considered as dependent variables, while bands and spectral indices selected as independent variables for the multivariate linear regression.

Results
The results obtained from the water depth equation at three different time intervals (2013, 2019, and 2020) showed that the minimum and maximum root mean square error (RMSE) values in depth calculation were 1.00 and 1.35 meters, respectively, with an average of 1.21 meters. Moreover, the minimum and maximum errors in estimating water stored volume were 3.88% and 14.85%, respectively, with an average of 9.25% for three dates that said. Considering that observed water depths during this period ranged from 16.5 to 39.5 meters, the results indicate acceptable accuracy. Analyses revealed that the normalized difference water index (NDWI) and near-infrared (NIR) band from the spectral indices of satellite imagery had the highest significant correlation with water depth, with coefficients of determination of 0.94 and 0.85, respectively.

Conclusion
The obtained results suggest that a linear regression relationship can be established between measured water depth and extracted spectral bands from satellite images for depths up to approximately 40 meters. This not only ensures accuracy in water depth estimation but also provides acceptable precision in estimating the volume of water stored in the reservoir. Improving and enhancing this approach could enable long-term volume estimation of reservoirs, contributing to better water resource management.

Keywords: Water depth estimation, Volume of stored water, Satellite imagery, Zujar Dam, Multivariate linear regression, DAHITI database.

کلیدواژه‌ها [English]

  • Volume of stored water
  • Satellite imagery
  • Zujar Dam
  • Multivariate linear regression
  • DAHITI database
1.Schwatke, C., Scherer, D., & Dettmering, D. (2019). Automated extraction of consistent time-variable water surfaces of lakes and reservoirs based on landsat and sentinel-2. Remote Sensing, 11 (9), 1010.
2.Garg, A. A., Shawul, A. A., & Chakma, S. (2020). Assessment of sedimentation and useful life of Tehri reservoir using integrated approaches of hydrodynamic modelling, satellite remote sensing and empirical curves. Curr. Sci.
118 (411), 411-420.
3.Schwatke, C., Dettmering, D., & Seitz, F. (2020). Volume variations of small inland water bodies from a combination of satellite altimetry and optical imagery. Remote Sensing, 12 (10), 1606.
4.Rasouli, A. A., Zarrinbakhsh, M., & Shafiee, M. (2009). Application of satellite images for land use change detection and environmental impact assessment. Watershed management research, 21 (1), 1-11. https://sid.ir/ paper/395396/en.
5.Motkan, A. A., Sohrabi Nia, M., Sadeghian, S., & Ma'navi, D. (2009). Applications of high-resolution satellite images in updating large-scale maps: A case study using IKONOS image of Urmia. Environmental Sciences, 6 (4), 171-182. https://sid.ir/paper/117678/en.
6.Eghbali, L., Laffi, & Heidar. (2009). The importance of remote sensing in geographical studies and education. Geographical land, 5 (4), 107-115.
7.Salehi, R., Qaragozlou, & Yousefi Far. (2021). Investigating environmental and medical effects of heavy metals using remote sensing technology and geochemistry (Case Study: Palang Valley Region and Dali Mine in Markazi Province). Environmental science and technology journal, 22 (11), 47-59.
8.Schultz, G. A., & Engman, E. T. (Eds.). (2012). Remote sensing in hydrology and water management. Springer Science and Business Media.
9.Shahri, S., Sayadi, & Yousefi. (2021). Monitoring chlorophyll-a, organic carbon, salinity, and Surface water temperature in sistan and Baluchestan coasts using remote sensing data. Journal of remote sensing and GIS in natural resources,
12 (4), 119-134.
10.Itchie, J. C., Zimba, P. V., & Everitt, J. H. (2003). Remote sensing techniques to assess water quality. Photogrammetric engineering and remote sensing, 69 (6), 695-704.
11.Reif, M. K. (2011). Remote sensing for inland water quality monitoring: A US Army Corps of Engineers Perspective.
12.Oxford, M. (1976). Remote sensing of suspended sediments in surface waters. Photogramm. Eng. Rem. Sens. 42, 1539-1545. ‏
13.Crétaux, J. F., & Birkett, C. (2006). Lake studies from satellite radar altimetry. Comptes Rendus Geoscience. 338 (14-15), 1098-1112.
14.Schwatke, C., Scherer, D., & Dettmering, D. (2019). Automated extraction of consistent time-variable water surfaces of lakes and reservoirs based on landsat and sentinel-2. Remote Sensing, 11 (9), 1010.
15.Mohammadkhanlou, H., Modiri, M., Khosali, E., & Enayati, H. (2019). Bathymetric mapping of coastal areas using sentinel-2 satellite images (Case study: Salalah Port, Oman). Geographical information, 28 (109), 25-35. https:// sid.ir/paper/253283/en.
16.Karimi, N., Bahreinimotlagh, M., Farokhnia, A., Roozbahani, R., & Hashemi, S. M. B. (2021). Extraction of caspian sea coastline bathymetry map using satellite data. Journal of Marine Engineering, 17 (34), 1-11.
17.Quang, D. N., Linh, N. K., Tam, H. S., & Viet, N. T. (2021). Remote sensing applications for reservoir water level monitoring, sustainable water surface management, and environmental risks in Quang Nam province, Vietnam.
Journal of Water and Climate Change
, 12 (7), 3045-3063.
18.Gourgouletis, N., Bariamis, G., Anagnostou, M. N., & Baltas, E. (2022). Estimating reservoir storage variations by combining Sentinel-2 and 3 measurements in the Yliki Reservoir, Greece. Remote Sensing, 14 (8), 1860.
19.Yao, F., Minear, J. T., Rajagopalan, B., Wang, C., Yang, K., & Livneh, B. (2023). Estimating Reservoir Sedimentation Rates and Storage Capacity Losses Using High‐Resolution Sentinel‐2 Satellite and Water Level Data. Geophysical Research Letters, 50 (16), e2023GL103524.
20.Sadki, M., Munier, S., Boone, A., & Ricci, S. (2023). Implementation and sensitivity analysis of the Dam-Reservoir OPeration model (DROP v1. 0) over Spain. Geoscientific Model Development, 16 (2), 427-448.
21.Schwatke, C., Dettmering, D., Bosch, W., & Seitz, F. (2015). DAHITI–an innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry. Hydrology and Earth System Sciences, 19 (10), 4345-4364.
22.Singh, A., Seitz, F., & Schwatke, C. (2013). Application of multi-sensor satellite data to observe water storage variations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6 (3), 1502-1508.
23.Ottinger, M., & Kuenzer, C. (2020). Spaceborne L-band synthetic aperture radar data for geoscientific analyses in coastal land applications: a review. Remote Sensing, 12 (14), 2228.
24.Ma, S., Zhou, Y., Gowda, P. H., Dong, J., Zhang, G., Kakani, V. G., Wagle, P., Chen, L., Flynn, K. C., & Jiang, W. (2019). Application of the water-related spectral reflectance indices: A review. Ecological indicators, 98, 68-79.
25.McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International journal of remote sensing, 17 (7), 1425-1432.
26.Jacobson, C. (1995). Word Recognition Index (WRI) as a quick screening marker of dyslexia. The Irish Journal of Psychology, 16 (3), 260-266.
27.Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International journal of remote sensing, 27 (14), 3025-3033.
28.Carlson, T. N., & Ripley, D. A. (1997). On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote sensing of Environment, 62 (3), 241-252.
29.Feyisa, G. L., Meilby, H., Fensholt, R., & Proud, S. R. (2014). Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote sensing of environment, 140, 23-35.
30.Kauth, R. J., & Thomas, G. S. (1976). January. The tasselled cap--a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. In LARS symposia (p. 159).
31.Acharya, T. D., Subedi, A., & Lee, D. H. (2018). Evaluation of water indices for surface water extraction in a Landsat 8 scene of Nepal. Sensors, 18 (8), 2580.