مدیریت محیط‎زیست-محور فرسایش خاک در حوزه آبخیز شازند، استان مرکزی

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 نویسنده مسئول، استاد گروه مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس، ایران

2 دانشجوی کارشناسی‌ارشد مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس، ایران

3 دانشجوی دکتری علوم و مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس، ایران

4 دانش‌آموخته دکتری علوم و مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس، ایران

5 دانشجوی دکتری علوم و مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس، ایران.

چکیده

سابقه و هدف: فرسایش خاک و پیامدهای ناشی از آن با تشدید بهره‌برداری انسان از طبیعت، اثرات منفی خود را بر بوم‌سازگان وارد کرده است. هم‌چنین از عوامل اصلی تهدیدکننده پایداری منابع و توسعه پایدار به شمار می‌رود. به‌طوری‌که حدود 36 درصد از زمین‌های کشاورزی و 60 درصد از کل خاک‌های ایران در معرض خطر فرسایش قرار دارند. استفاده از روش‌های زیستی بیش‌تر در مراحل ابتدایی فرسایش به‌مراتب نتیجه و اثر بیش‌تری خواهد داشت. ضرورت کاربرد روش‌های زیستی با روش‌های زیست‌مهندسی، مهندسی و سایر اقدامات سازه‌ای آبخیزداری با افزایش میزان فرسایش نمود بیش‌تری خواهد داشت. باوجوداین، استقبال لازم از مدیریت محیط‌زیست-محور فرسایش خاک به سبب عدم الگوی اجرایی مناسب توسط کارشناسان اجرایی صورت نگرفته است. ازاین‌رو، پژوهش حاضر باهدف مدیریت محیط‌زیست-محور فرسایش خاک در حوزه آبخیز شازند واقع در استان مرکزی به سبب غلبه فرسایش توزیعی و قابل مدیریت انجام شد.
مواد و روش‌ها: به همین ‌منظور نخست واحد‌های کاری از تلفیق لایه‌های ارتفاع، شیب و زمین‌شناسی حوزه آبخیز شازند تعیین شد. سپس وضعیت فرسایش خاک بر اساس جدول امتیازدهی عوامل هفت‌گانه مدل BLM، در واحدهای ‌کاری بر اساس بازدید میدانی و نظرات کارشناسی تکمیل و سپس نقشه سیمای فرسایشی تهیه شد. در مرحله بعد به‌منظور اطمینان از نتایج نقشه سیمای فرسایشی نقشه شاخص سطح برگ با استفاده از داده‌های سنجنده MSI ماهواره Sentinel-2 تهیه شد. سپس منحنی آمبروترمیک و هایترگراف و نقشه‌ اقلیمی-کشاورزی برای آبخیز موردمطالعه به دست آمد. در ادامه تراکم دام در رده‌های اقلیمی-کشاورزی مختلف بررسی و درنهایت با توجه به نتایج به‌دست‌آمده گونه‌های گیاهی مناسب از مجموعه فهرست گونه‌های غالب منطقه ارائه شد.
یافته‌ها: با توجه به ارزیابی جدول BLM از بین 15 واحد کاری، یک واحد کاری (12 درصد) در وضعیت فرسایشی جزئی، نُه واحد کاری (58 درصد) در وضعیت فرسایشی کم، چهار واحد کاری (25 درصد) در وضعیت فرسایشی متوسط و یک واحد کاری (سه درصد) در وضعیت فرسایشی زیاد قرار دارد. وضعیت کلی فرسایش خاک در آبخیز مطالعاتی با امتیاز 53/36 در طبقه کم قرارگرفته است. هم‌چنین بررسی نقشه‌های سیمای فرسایش و شاخص‌ سطح برگ به‌دست‌آمده حاکی از تطابق اندازه‌گیری‌های میدانی با داده‌های سنجش‌ازدور داشت. بر اساس نمودار آمبروترمیک، ماه‌های اردیبهشت تا مهر خشک بوده و دراین‌بین خرداد، تیر و مرداد خشک‌ترین ماه سال در منطقه موردمطالعه بوده است. بر طبق نتایج این پژوهش رده‌های اقلیمی-کشاورزی پنج و دو به ترتیب با 36 و 19 درصد بیش‌ترین تراکم دام را به خود اختصاص داده‌ است. درنهایت گونه‌ها شامل علف گندمی بیابانی، چاودار کوهی، علف پشمکی، اسپرس، درمنه دشتی و بادام‌کوهی انتخاب‌ و پهنه‌بندی استفاده از آن‌ها ارائه شد. این نتایج دارای پتانسیل تغییر بازی در مدیریت فرسایش خاک در مراحل ابتدایی با بهره‌گیری از انواع مختلف گونه‌های بومی را دارد.
نتیجه‌گیری: یافته‌های این مطالعه با تأکید بر نیاز ضروری به مدیریت مؤثر فرسایش حوضه از اهمیت قابل‌توجهی برخوردار است. با بهره‌گیری از قابلیت‌های بازیابی بوم‌سازگان می‌توان فرصت و شرایط لازم برای احیای بخش‌های مختلف حوضه را ایجاد کرد. این رویکرد، هنگامی‌که با راه‌حل‌های مناسب و ساده ترکیب شود، می‌تواند سهم قابل‌توجهی در کاهش فرسایش خاک در حوزه آبخیز شازند و فراتر از آن را داشته باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Nature-based Management of Soil Erosion in the Shazand Watershed, Markazi Province, Iran

نویسندگان [English]

  • Seyed Hamidreza Sadeghi 1
  • Negin Rashidi 2
  • Fatemeh Abdolbaghi 2
  • Sahar Mousavian 2
  • Marjan Bahlekeh 3
  • Mahin Kalehhouie 4
  • Mostafa Zabihi Silabi 5
1 Corresponding Author, Professor, Dept. of Watershed Management Engineering, Faculty of Natural Resources, Tarbiat Modares University, Iran
2 M.Sc. Student of Watershed Management Engineering, Faculty of Natural Resources, Tarbiat Modares University, Iran.
3 Ph.D. Student of Watershed Management Sciences and Engineering, Faculty of Natural Resources, Tarbiat Modares University, Iran.
4 Ph.D. Graduate of Watershed Management Sciences and Engineering, Faculty of Natural Resources, Tarbiat Modares University, Iran
5 Ph.D. Student of Watershed Management Sciences and Engineering, Faculty of Natural Resources, Tarbiat Modares University, Iran
چکیده [English]

Background and objectives: Soil erosion and its consequences, exacerbated by the intensification of human exploitation of nature, has had a detrimental impact on ecosystems. It is also, considered one of the main vulnerable factors of resource stability and sustainable development. Soil erosion poses a threat to approximately 36% of agricultural lands and 60% of all soils in Iran. The use of biological methods has shown significant results and impacts in the initial stages of erosion. The increasing erosion rate underscores the necessity of utilizing biological methods in conjunction with bioengineering methods, engineering, and other structural measures. However, the use of nature-based to management soil erosion has yet to be widely accepted due to the lack of a suitable implementation model by project implementation agencies. This study was therefore conducted to address the urgent need for the nature-based management of erosion in the Shazand Watershed, located in the Markazi Province, due to the high prevalence of manageable distributed erosion.
Materials and methods: To determine the initial land units, the elevation, slope, and geologic maps of the Shazand Watershed were combined. Then the soil erosion status was completed based on the scoring table of the seven factors of the BLM model, in land units based on field visits and expert opinions, and then the erosion feature map was prepared. In the next step, in order to ensure the results of the erosion feature map, the leaf area index map was prepared using the MSI sensor data of the Sentinel-2 satellite.Then, the Ambrothermic diagram, hythergraph, and climate-biological map were prepared for the entire watershed. In the following, livestock density in different agro-climatic class was investigated, and suitable species were ultimately presented from the list of dominant species in the region.
Results: The assessment of the BLM model revealed that among the 15 land units, one land unit (12%) was in the state of partial erosion, nine land units (58%) were in the state of low erosion, four land units (25%) were in the state of moderate erosion, and a land unit (3%) had the highest erosion rate. The soil erosion situation within the watershed was in the lowest class, with a score of 36.53. The erosion map analysis and the obtained leaf surface indices confirmed the accuracy of field measurements against remote sensing data. The Ambrothermic diagram further showed that the months from May to October are dry, while June to August are the driest months of the year in the study area. According to the agroclimatic studies, zones 5 and 2 have the highest livestock density, with 36% and 19%, respectively. Finally, Agropyron desertorum, Secale montanum, Bromus tomentellu, Onobrychis sativa, Artemisia siberi, and Amygduluse orintalis were selected to be used for reclamation purposes in different zones. These results hold the potential to be a game-changer in environmental soil erosion management at early stages using various types of endemic species.
Conclusion: The findings of this study are of significant importance, emphasizing the pressing need for effective watershed erosion management. By harnessing the restoration capabilities of the ecosystem, we can create opportunities and the necessary conditions for rejuvenating various parts of the watershed. This approach, when combined with appropriate and straightforward solutions, can make a substantial contribution to the mitigation of soil erosion in the Shazand Watershed and beyond.

کلیدواژه‌ها [English]

  • Adapted Plant Species
  • Agro-climatic Zoning
  • Biological Management
  • Watershed Management
1.Koirala, P., Thakuri, S., Joshi, S., & Chauhan, R. (2019). Estimation of soil erosion in Nepal using a RUSLE modeling and geospatial tool. Geosciences, 9 (4), 147.
2.Quinton, J. N., & Fiener, P. (2024). Soil erosion on arable land: An unresolved global environmental threat. Progress in Physical Geography: Earth and Environment, 48 (1), 136-161.
3.Heydarnejad, S., Ranjbar Fordoei, A., Mousavi, S. H., & Mirzaei, R. (2020). Estimation of soil erosion using SLEMSA model and OWA approach in Lorestan Province (Iran). Environmental Resources Research, 8 (1), 11-24.
4.Nezhadafzali, K., Shahrokhi, M. R., & Bayatani, F. (2019). Assessment soil erosion using RUSLE model and identification the most effective factor in Dekhan Watershed basin of southern Kerman. Natural Environmental Hazards, 8 (20), 21-38. [In Persian]
5.Mohammadi Ostadkelayeh, A., Toomaj, A., Mehrabi Nia, F., & Bahlake, M. (2022). Investigating the relationship between spatial resilience and individual resilience of areas subject to resettlement plan (Case study of Northeastern Flooded Areas of Golestan Province). Geography and Environmental Hazards, 11 (2), 127-142. [In Persian]
6.Tang, Z., Song, W., & Zou, J. (2024). Farmland protection and fertilization intensity: Empirical evidence from preservation policy of Heilongjiang's black soil. Environmental Management, 356, 120629.
7.Sadeghi, S. H. R., Kheirfam, H., & Zarei Darki, B. (2020). Controlling runoff generation and soil loss from field experimental plots through inoculating cyanobacteria. Hydrology, 585, 124814. 59.
8.Sadeghi, S. H. R., Hazbavi, Z., Kiani-Harchegani, M., Younesi, H., Sadeghi, P., Angulo-Jaramillo, R., & Lassabatere, L. (2021c). The hydrologic behavior of Loess and Marl soils in response to biochar and polyacrylamide mulching under laboratorial rainfall simulation conditions. Hydrology. 592, 125620.
9.Sadeghi, S. H. R., Ghavimi Panah, M. H., & Younesi, H. (2017). Feasibility of reducing soil loss using biochar produced from dairy factory waste. Soil Water Conservation, 24 (4), 211-226. [In Persian]
10.Hamza, O., Esaker, M., Abogdera, A., & Elliott, D. (2024). Bio-protection of cementitious materials below ground: The significance of natural soil environments. Developments in the Built Environment, 17, 100331.
11.Firoozi, A., Akbari, H., Lotfalian, M., & Moghaddami Rad, M. (2016). The effect of vegetation on soil erosion. Fourth National Conference of Student Scientific Associations in Agriculture, Natural Resources and Environment, Karaj. [In Persian]
12.Hamza, O., Esaker, M., Abogdera, A., & Elliott, D. (2024). Bio-protection of cementitious materials below ground: The significance of natural soil environments. Developments in the Built Environment, 17, 100331.
13.Rouhani, H., Fathabadi, A., Bahlekeh, M., & Seyedian, S. M. (2019). Analysis of projected impacts of climate change on hydrological behavior of catchments based on signature indices in the Arazkoose Watershed. Water and Soil Science, 29 (4), 97-108. [In Persian]
14.Caplan, J. S., Salisbury, A. B., McKenzie, E. R., Behbahani, A., & Eisenman, S. W. (2024). Spatial, temporal, and biological factors influencing plant responses to deicing salt in roadside bioinfiltration basins. Environmental Management, 359, 120761.
15.Sarai Tabrizi, M., & Mohammadian Khorasani, Sh. (2022). Effects field evaluation of the effect of watershed management operations and water resources sustainable management on reducing erosion and sediment from floods. Applied Soil Research, 10 (3), 104-116. [In Persian]
16.Moghaddamirad, M., Moayeri, M., Abdi, A., & Ghorbani Vaghei, H. (2018). Effect of vegetation cover density on runoff and soil loss of interill erosion in forest road cutslope (Case study: Koohmian Forest-Azadshahr). Soil and Water Conservation Research (Agricultural Sciences and Natural Resources), 25 (2), 219-223. [In Persian]
17.Sourinejad, A. (2019). Evaluation of sedimentation intensity and erosion of Lake Urmia watershed. 14th National Conference on Watershed Management Science and Engineering, Iran, Urmia. [In Persian]
18.Yaekob, T., Tamene, L., Gebrehiwot, S. G., Demissie, S. S., Adimassu, Z., Woldearegay, K., & Solomon, D. (2020). Assessing the impacts of different land uses and soil and water conservation interventions on runoff and sediment yield at different scales in the central highlands of Ethiopia. Renewable Agriculture and Food Systems, 1-15.
19.Du, X., Jian, J., Du, C., & Stewart, R. D. (2021). Conservation management decreases surface runoff and soil erosion. Soil and Water Conservation Research, 10 (2), 188-196.
20.Yousefi Mobarhan, E., & Peyrowan, H. (2022). Investigating the sustainability and interactive effects of physical-chemical properties of erosion-sensitive marl and rangeland vegetation in arid and semiarid areas (Case Study: Shahrood Town). Geography and Environmental Sustainability, 12 (1), 57-74.
21.Ennaji, N., Ouakhir, H., Abahrour, M., & Spalevic, V. (2024). Impact of watershed management practices on vegetation, land use changes, and soil erosion in River Basins of the Atlas, Morocco. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52 (1), 13567-13567.
22.Sadeghi, S. H. R., Jafarpoor, A., Zabihi Silabi, M., Molashahi, S., Naghdi, M., Sharifi Moghani, M., Ghysoori, Z., & Farzadfar, E. (2021a). Biologic Management Framework of Soil Erosion in the Watershed (Applied study: Oshnavieh Galazchai, West Azerbaijan, Iran). Soil and Water Research, 52 (4), 1-15. [In Persian]
23.Sadeghi, S. H. R., Jafarpoor, A., Farajolahi, M., Khatibi Roodbarsara, D., Moradi Sefidcheghayi, M., Zabihi Silabi, M., Khosravi, M., Kolani, E., Mohammedi, B., Adibi, M. J., & Azarniya, H. (2021b). Biological management of soil erosion (Case study: Gavoshan Watershed, Kermanshah Province, Iran). Journal of Water and Soil, 35 (4), 551-566. [In Persian]
24.Kalehhouei, M., Zabihi Seilabi, M., Sadeghi, P. S., Khaledi Darvishan, A. K., Spalovich, V., & Sadeghi, S. H. R. (2020). Application of the IntEro model for soil erosion estimation in the Shazand Watershed, Markazi Province, Iran. 15th National conference on Watershed Management Sciences and Engineering of IRAN. Sari Agricultural Sciences and Natural Resources University, Iran. [In Persian]
25.Davudirad, A. A., Sadeghi, S. H. R., & Sadoddin, A. (2016). The Impact of Development Plans on Hydrological Changes in the Shazand Watershed, Iran. Land Degradation and Development, 27 (4), 1236-1244.
26.Esmali, A., & Abdollahi, Kh. (2011). Watershed Management & Soil Conservation. University of Mohaghegh Ardabili 612 p. [In Persian]
27.Nojavan, M., Mohammadi, A. A., & Gholami, V. (2012). Determining the severity of erosion using Fargas and BLM models, Case: Bandara catchment area. Geography and Development, 29, 119-130. [In Persian]
28.Shojaei, S., Noura, M., & Habibi-mood, S. (2019). Estimation of sedimentation and erosion using MPSIAC, FSM and direct measurement methods in Gabric watershed, South-eastern of Iran. Environmental Erosion Research, 8 (4), 82-100. [In Persian]
29.Jonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weis, M., & Baret, F. (2004). Review of methods for in situ leaf area index determination Part I. Theories. Sensors and hemispherical photography. Agricultural and Forest Meteorology, 121, 19-35.
30.Refahi, H. Q. 2015. Water erosion and its control. Tehran University Press, 4th edition, 671 p. [In Persian]
31.Salehi, B., Valizadeh-Kamran, Kh., & Ghavidel Rahimi, Y. (2008). The simulation of Tabriz temperature in atmospheric carbon dioxide doubling condition using Goddard institute on space studies general circulation model (GISS GCM). Geographical Research Quarterly, 62, 55-66. [In Persian]
32.Hu, Y., Liu, L., Liu, L., Peng, D., Jiao, Q., & Zhang, H. (2014). A landsat-5 atmospheric correction based on MODIS atmosphere products and 6S model. Applied Earth Observations and Remote Sensing, 7 (5), 1609-1615.
33.Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273-297.
34.Tucker, C. J., Slayback, D. A., Pinzon, J. E., Los, S. O., Myneni, R. B., & Taylor, M. G. (2001). Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. Biometeorology, 45 (4), 184-19.
35.Tadono, T., Ishida, H., Oda, F., Naito, S., Minakawa, K., & Iwamoto, H. (2014). Precise global DEM generation by ALOS PRISM. ISPRS Annals of the Photogrammetry. Remote Sensing and Spatial Information Sciences, 2 (4), 71.
36.Sadeghi, S. H. R. (2005). A semi-detailed technique for soil erosion mapping based on BLM and satellite image applications. Agricultural Sciences and Technology (JAST), 7 (3-4), 133-142.
37.Sadeghi, S. H. R., Jafarpoor, A., Zabihi Silabi, M., Molashahi, S., Naghdi, M., Sharifi Moghani, M., Ghysoori, Z., & Farzadfar, E. (2021a). Biologic Management Framework of Soil Erosion in the Watershed (Applied study: Oshnavieh Galazchai, West Azerbaijan, Iran). Soil and Water Research, 52 (4), 1-15. [In Persian]
38.Sadeghi, S. H. R., Hazbavi, Z., Kiani-Harchegani, M., Younesi, H., Sadeghi, P. S., Angulo-Jaramillo, R., & Lassabatere, L. (2021c.) The hydrologic behavior of Loess and Marl soils in response to biochar and polyacrylamide mulching under laboratorial rainfall simulation conditions. Hydrology. 592, 125620.
39.Newson, M. (1997). Land, water and development: Sustainable management of river basin systems. Second Edition, ISBN 0-203-44352-7 Master e-book ISBN, London and New York, 460.
40.Foushee, A. (2010). Identifying ecological indicators of climate change and land use impacts to a coastal watershed. University of Vermont, Project, 60.
41.Phillips, I. D., Davies, J. M., Bowman, M. F., & Chivers, D. P. (2016). Macroinvertebrate communities in a Northern Great Plains River are strongly shaped by naturally occurring suspended sediments: implications for ecosystem health assessment. Freshwater Science, 35, 1354-1364.
42.Hazbavi, Z., Keesstra, S. D., Nunes, J. P., Jantiene, B., Gholamalifard, M., & Sadeghi, S. H. R. (2018). Health comparative comprehensive assessment of watersheds with different climates. Ecological Indicators, 93, 781-790.
43.Davudirad, A. A., Sadeghi, S. H. R., & Sadoddin, A. (2016). The Impact of Development Plans on Hydrological Changes in the Shazand Watershed, Iran. Land Degradation and Development, 27 (4), 1236-1244.
44.Sunandar, A. D., Suhendang, E., Hendrayanto, I., & Jaya, N. S. (2014). Land use optimization in Asahan Watershed with linear programming and SWAT model. Basic and Applied Research, 18 (1), 63-78.
45.Jafari, A., Keivan-behjou, F., & Mostafazadeh, R. (2017). Comparing the conditions of different Ecosystem Health components in Iiril watershed, Ardabil Province. Desert Ecosystem Engineering, 6 (16), 81-92. [In Persian]
46.Salvati, L., & Zitti, M. (2009). Substitutability and weighting of ecological and economic indicators: Exploring the importance of various components of a synthetic index. Ecological Economics, 68, 1093-1099.
47.Parvari, S. H., Pahlavanravi, A., Moghadamnia, A. R., Dehvari, A., & Parvari, D. (2011). Application of methodology for mapping environmentally sensitive areas (ESAs) to desertification in Dry Bed of Hamoun Wetland (Iran). Natural Resources and Marine Sciences, 1 (1), 65-80.
48.Souri, M., Bayat, M., & Khodaqoli, M. 2018. Estimation of long-term fodder production of Fars steppe pastures based on climatic parameters. Natural Resources of Iran, 72 (4), 1009-995. [In Persian]
49.Jalili, Kh., Sadeghi, S. H. R., & Nikkami, D. (2007). Land use optimization of watershed for soil erosion minimization using linear programming (Case Study of Brimvand Watershed, Kermanshah Province). JWSS, 10 (4), 15-27. [In Persian]
50.Yaekob, T., Tamene, L., Gebrehiwot, S. G., Demissie, S. S., Adimassu, Z., Woldearegay, K., & Solomon, D. (2020). Assessing the impacts of different land uses and soil and water conservation interventions on runoff and sediment yield at different scales in the central highlands of Ethiopia. Renewable Agriculture and Food Systems, 1-15.
51.Du, X., Jian, J., Du, C., & Stewart, R. D. (2021). Conservation management decreases surface runoff and soil erosion. Soil and Water Conservation Research, 10 (2), 188-196.
52.Kiani, F., Jalalian, A., Pashaee, A., & Khademi, H. (2007). Effect of deforestation, grazing exclusion and rangeland degradation on soil quality indices in loess-derived landforms of Golestan Province. Journal of Water and Soil Science, 11 (41), 453-464. [In Persian]
53.Sadeghi, S. H. R., Hazbavi, Z., & Gholamalifard, M. (2019). Interactive impacts of climatic, hydrologic and anthropogenic activities on watershed health. Science of the Total Environment, 648, 880-893.
54.Hazbavi, Z., & Sadeghi, S. H. R. (2017). Watershed Health Characterization Using Reliability–Resilience–Vulnerability Conceptual Framework Based on Hydrological Responses. Land Degradation and Development, 28, 1528-1537.
55.Mirchooli, F., Sadeghi, S. H. R., & Khaledi Darvishan, A. (2022). Spatiotemporal dynamic of environmental indices of watershed sustainability in connection with land-use change. Ecosystem Health and Sustainability, 8 (1), 2024454.
56.Sadeghi, S. H. R., Hazbavi, Z., & Gholamalifard, M. (2019). Interactive impacts of climatic, hydrologic and anthropogenic activities on watershed health. Science of the Total Environment, 648, 880-893.
57.Hazbavi, Z., & Sadeghi, S. H. R. (2017). Watershed Health Characterization Using Reliability–Resilience–Vulnerability Conceptual Framework Based on Hydrological Responses. Land Degradation and Development, 28, 1528-1537.
58.Seyedmohammadi, S. A., Jafari, A. A., Seyedmohammadi, N., Khayat, M., & Motagh, M. (2011). Study of relationship between forage yield and morphologycal characteristics of Agropyron desertorum genotypes. Crop Physiology, 2 (8), 71-81. [In Persian]
59.Tavakoli, M., & Pirozi, F. (2011). Preliminary study of the causes of drought and decay of Arjan (Amygduluse orientalis) shrubs in Lorestan Province. Central Zagros National Forest Conference, Capabilities and bottlenecks. 8p. [In Persian]
60.Maerker, M., Sommer, C., Zakerinejad, R., & Cama, E. (2017). An integrated assessment of soil erosion dynamics with special emphasis on gully erosion: Case studies from South Africa and Iran. EGU General Assembly Conference Abstracts.
61.Maassoumi, A. (2016). Role of Astragalus in equilibrium ecosystem. Iran Nature, 1 (1), 41-47. [In Persian]
62.Vahabi, M. R., Basiri, M., Moghadam, M. R., & Masoumi, A. A. (2007). Determination of the most effective habitat indices for evaluation of Tragacanth sites in Isfahan province. Natural Research, 59 (4), 1013-1029. [In Persian]
63.Rahnama, S., Ardestani, E. G., Ebrahimi, A., & Nikookhah, F. 2023. Seed priming with plant growth-promoting bacteria (PGPB) improves growth and water stress tolerance of Secale montanum. Heliyon, 9 (4).
64.Mirzaei Mossivand, A. (2023). The impact of livestock grazing intensity on the quantity and quality of Bromus Tomentellus boiss aerial organs (Case study: Northeast of Delfan County). Plant Ecosystem Conservation,
10 (21), 57-67. [In Persian]
65.Delshadi, S., Ebrahimi, M., & Shirmohammadi, E. (2017). Influence of plant-growth-promoting bacteria on germination, growth and nutrients’ uptake of Onobrychis sativa L. under drought stress. Plant Interactions, 12 (1), 200-208.
66.Rabiei, M. (2018). Identification of pasture plants. Payam Noor University, 4, 136. [In Persian]
67.Zakerinejad, R., & Maerker, M. (2015). An integrated assessment of soil erosion dynamics with special emphasis on gully erosion in the Mazayjan basin, southwestern Iran. Natural Hazards,79 (1), 25-50.
68.Zhang, J., Qiu, H., Tang, B., Yang, D., Liu, Y., Liu, Z., Le., B., Zhou, W., & Zhu, Y. (2022). Accelerating effect of vegetation on the instability of rainfall-induced shallow landslides. Remote Sensing, 14 (22), 5743.
69.Wei, S., Zhang, K., Liu, C., Cen, Y., & Xia, J. (2024). Effects of different vegetation components on soil erosion and response to rainfall intensity under simulated rainfall. Catena, 235, 107652.