امکان‌سنجی تخمین تنش آبی پنبه بر اساس شاخص‌های طیفی تصاویر ماهواره لندست و سنتینل 2

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی آبیاری و زهکشی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

2 نویسنده مسئول، دانشیار گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

3 دانشیار گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

4 استادیار گروه مدیریت مناطق بیابانی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

چکیده

سابقه و هدف: کمبود آبی به عنوان یکی از عوامل تنش محصول پنبه، یک واکنش نسبت به تغییراتی است که در محیط رشد گیاه رخ می‌دهد و بر روی میزان بهره‌وری محصولات زراعی اثر منفی می‌گذارد که با وجود روش‌های مختلف مدیریت زمین‌های زراعی، به خوبی قابل پیشگیری است. مدیریت زمین‌های زراعی نیازمند استفاده از داده‌ها و اطلاعات کافی از بخش‌های مختلف اراضی زراعی بوده و در این صورت است که می‌توان بهره‌وری را به شکل قابل توجهی ارتقاء داد.
مواد و روش‌ها: منطقه مورد مطالعه در محدوده اراضی پنبه روستاهای شیرعلی‌آباد و سیستانی ‌محله از توابع بخش خدمات کشاورزی انجیرآب شهرستان گرگان در مختصات جغرافیایی "22 52o36 تا "52 52o36 عرض شمالی و "55 21o54 تا "50 20o54 طول شرقی است. پایش دقیق و مستمر محتوای رطوبتی خاک، به عنوان نماینده تنش رطوبتی خاک، با اندازه‌گیری‌های میدانی رطوبت خاک و دیگر پارامترهای محیطی (دمای محیط، دمای سطح برگ، شاخص سطح برگ و همچنین شوری)، در طی فصل رشد (اواخر اردیبهشت تا اواخر مهر) به مدت 5 ماه صورت گرفت. پس از استخراج باندهای طیفی از تصاویر ماهواره‌ای لندست و سنتینل 2، شاخص‌های طیفی محاسبه شدند. با استفاده از روش‌های رگرسیون چند متغیره خطی (MLR) و رگرسیون درختی M5 ارتباط بین شاخص‌های طیفی به عنوان متغیر مستقل و رطوبت سطحی خاک به عنوان متغیر وابسته، جستجو و در نهایت مدل بهینه با بررسی معیارهای ارزیابی خطا با بیشترین دقت و کمترین خطا حاصل شد.
یافته‌ها: مدل درختی M5 نسبت به MLR از دقت بالاتری در برآورد تنش آبی پنبه برخوردار بود؛ بطوریکه در ماهواره لندست ضریب تبیین را از 51/0 به 79/0 افزایش، و مقدار خطا را از 2/4 درصد به 9/2 درصد کاهش داد. همچنین ماهواره لندست نسبت به ماهواره سنتینل 2 از دقت بالاتری برخوردار بود. بطوریکه در سنتینل 2 حداکثر ضریب تبیین 46/0 و خطای 9/4 درصد به دست آمد. در ماهواره لندست شاخص حرارتی LST تأثیرپذیری زیادی از تغییرات تنش آبی نشان داد و ترکیب 3 شاخص حرارتی LST، پوشش گیاهی NDVI و شوری SI2 با ضریب تبیین 76/0 و مقدار درصد خطای 3/3، نتایج قابل قبولی را ارائه نمود.
نتیجه‌گیری: تأثیر تنش آبی در بازتاب، در محدوده مادون قرمز و حرارتی باعث شد تا شاخص‌های حرارتی و آبی مانند LST، NMDI، NDWI و WI در اجرای گام به گام مدل درختی M5 تأثیر قابل توجهی داشته باشد. بطوریکه شاخص حرارتی LST در ماهواره لندست و شاخص‌های آبی NDWI و NMDI در ماهواره سنتینل 2 از نقش مؤثرتری در برآورد تنش آبی برخوردا بودند. اط طرفی فقدان باند حرارتی در سنتینل 2 باعث کاهش دقت آن نسبت به ماهواره لندست شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Feasibility of estimating cotton water stress based on spectral indices of Landsat and Sentinel 2 satellite images

نویسندگان [English]

  • Maryam Mazidi 1
  • MOUSA HESAM 2
  • Khalil Ghorbani 3
  • Choghi Bayram Komaki 4
1 Ph.D. Student in Irrigation and Drainage Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
2 Corresponding Author, Associate Prof., Dept. of Water Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
3 Associate Prof., Dept. of Water Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
4 Assistant Prof., Dept. of Arid Regions Management, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
چکیده [English]

Background and objectives: Water deficiency, as one of the factors of cotton crop stress, is a reaction to the changes that occur in the plant growth environment and has a negative effect on the productivity of crops, which can be well prevented with different methods of agricultural land management. Agricultural land management requires the use of sufficient data and information from different parts of agricultural land, and it is in this way that productivity can be significantly improved.
Materials and methods: The studied area is within the cotton lands of Shir Ali Abad and Sistani villages, a neighborhood of the functions of Engirab Agricultural Services Department, Gorgan city, in the geographical coordinates of 36o52’22” to 36o52’52” north latitude and 54o21’55” to 54o20’50” east longitude. Accurate and continuous monitoring of soil moisture content, as a representative of soil moisture stress, was done with field measurements of soil moisture and other environmental parameters (air temperature, leaf surface temperature, leaf surface index and also salinity), during the growing season (late May to late October) for 5 months. After extracting spectral bands from Landsat and Sentinel 2 satellite images, spectral indices were calculated. Using the methods of multivariate linear regression (MLR) and M5 tree regression, the relationship between spectral indices as an independent variable and soil surface moisture as a dependent variable, search and finally the optimal model by examining error evaluation criteria with the highest accuracy and the lowest resulting error became.
Results: M5 tree model was more accurate than MLR in estimating cotton water stress; In Landsat satellite, the explanation coefficient increased from 0.51 to 0.79, and the error value decreased from 4.2% to 2.9%. Also, the Landsat satellite was more accurate than the Sentinel 2 satellite. Thus, in Sentinel 2, the maximum explanation coefficient was 0.46 and the error was 4.9%. In the Landsat satellite, LST thermal index showed a great influence of water stress changes and the combination of 3 LST thermal indices, NDVI vegetation and SI2 salinity with an explanation coefficient of 0.76 and an error percentage of 3.3, provided acceptable results.
Conclusion: The effect of water stress on reflection, in the infrared and thermal range, caused thermal and water indices such as LST, NMDI, NDWI and WI to have a significant effect in the step-by-step implementation of the M5 tree model. Thus, LST thermal index in Landsat satellite and water indices NDWI and NMDI in Sentinel 2 satellite played a more effective role in estimating water stress. On the other hand, the lack of a thermal band in Sentinel 2 has reduced its accuracy compared to the Landsat satellite.

کلیدواژه‌ها [English]

  • M5 tree regression
  • remote sensing
  • thermal indices
  • optical satellites
 
1.Geerts, S., & Raes, D. (2009). Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agriculture Water Manage J.96 (9), 1275-1284.2.Mahan, J. R., Young, A. W., & Payton, P. (2012). Deficit irrigation in a production setting: canopy temperature as an adjunct to ET estimates. Irrigation Science J. 30 (27), 127–137.3.Baret, F., Houlès, V., & Guérif, M. (2007). Quantification of plant stress using remotesensing observations and crop models: the case of nitrogen management. Exp. Bot. J. 58 (4), 869-880.4.Jackson, R. D., Idso, S. B., Reginato, R. J., & Pinter, P. J. 1981. Canopy temperature as acropwater stress indicator. Water Resour. Res. J.17 (4), 1133-1138.5.Ranjbar, S., Akhoondzadeh, M., Brisco, B., Amani, M., & Hosseini, M. (2021). Soil moisture change monitoring from c and 1-band SAR interferometric phase observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. J.14, 7179-7197. DOI: 10.1109/JSTARS. 2021.3096063.6.Mazidi, M., Hesam, M., Ghorbani, Kh., & Komaki, Ch. B. (2024). Evaluation of Cotton Water Stress Estimation Using Multispectral Satellite Images Based on M5 Tree Model. Water Research in Agriculture J. 37 (4), 385-400. [In Persian]
7.Makaya, N. P., Mutanga, O., Kiala, Z., Dube, T., & Seutloali, K. E. (2019) .Assessing the potential of Sentinel-2 MSI sensor in detecting and mapping the spatial distribution of gullies in a communal grazing landscape. Phys. Chem. Earth Parts J. 112, 66-74. DOI:10.1016/j.pce.2019.02.001.8.Vanino, S., Nino, P., de Michele, C., Bolognesi, S. F., D’Urso, G., di Bene, C., Pennelli, B., Vuolo, F., Farina, R., & Pulighe, G. (2018). Capability of Sentinel-2 data for estimating maximum evapotranspiration and irrigation requirements for tomato crop in Central Italy. Remote Sensing Environment J. 215, 452–470. DOI:10.1016/ j.rse.2018. 06.035. 9.Huete, A. R. (2012). Vegetation indices, remote sensing and forest monitoring. Geogr. Compass. 6 (9), 513-532.10.El Hachimi, J., El Harti, A., Ouzemou, J. E., Lhissou, R., Chakouri, M., & Jellouli, A. (2021). Assessment of the benefit of a single sentinel-2 satellite image to small crop parcels mapping. Geocarto Int. J. 35 (25), 1-17.11.Zarco-Tejada, P. J., Rueda, C. A., & Ustin, S. L. (2003). Water content estimation in vegetation with MODIS reflectance data and model inversion methods. Remote Sensing of Environment J. 85 (1), 109-124.12.Rapaport, T., Hochberg, U., Shoshany, M., Karnieli, A., & Rachmilevitch, S. (2015). Combining leaf physiology, hyperspectral imaging and partial least squares-regression (PLS-R) for grapevine water status assessment. Photogrammetry and Remote Sensing J. 109, 88-97. DOI:10.1016/j.isprsjprs. 2015.09.003.13.Rozenstein, O., Haymann, N., Kaplan, G., & Tanny, J. (2018). Estimating cotton water consumption using a time series of Sentinel-2 imagery. Agricultural Water Management J.
207, 44-52. DOI:10.1016/j.agwat. 2018.05.017.14.Romero, M., Luo, Y., Su, B., & Fuentes, S. (2018). Vineyard water status estimation using multispectral imagery from an UAV platform and machine learning algorithms for irrigation scheduling management. Computers and Electronics in Agriculture J. 147, 109-117. DOI:10.1016/j. compag.2018.02.013.15.Veysi, Sh., Naseri, A. A., & Hamzeh, S. (2020). Relationship Between Field Measurement of Soil Moisture in the Effective Depth of Sugarcane Root Zone and Extracted Indices from Spectral Reflectance of Optical/ Thermal Bands of Multispectral Satellite Images. Indian Society of Remote Sensing J. DOI: 10. 1007/s12524-020-01135-2.16.Jamshidi, S., Zand-Parsa, Sh., & Niyogi, D. (2020). Assessing Crop Water Stress Index of Citrus Using In-Situ Measurements, Landsat, and Sentinel-2 Data. Remote Sensing Int. J.42 (5), 1893-1916.17.Veysi, S., Naseri, A. A., Hamzeh, S., & Bartholomeus, H. (2017). A satellite based crop water stress index for irrigation scheduling in sugarcane fields. Agricultural Water Management J.
189, 70–86. DOI:10.1016/j.agwat. 2017.04.016.18.Ghorbani, K., Salarijazi, M., & Ghahreman N. (2022). Developing Stepwise m5 Tree Model to Determine the Influential Factors on Rainfall Prediction and to Overcome the
Greedy Problem of its Algorithm. Water Resources Management J.36, 3327-3348. DOI: 10.1007/s11269-022-03203-3.19.Ghorbani, K., Zolfaghari, P., Siahbalaei, M., Rezaei Ghaleh, L., Komaki, C. B., & Valizadeh, E. (2022). Estimating soil surface moisture by using landsat 8 and sentinel 2 satellites techniques depending on the stepwise decision tree. Earth Science Informatics J.17, 1147-1160. DOI: 10.1007/s12145-023-01203-4.20.Rouse, J. W., Hass, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring Vegetation Systems in the Great Plains with ERTS, Third ERTS symposium, NASA SP-35. A20. 309-317.21.Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment J. 25 (3), 295-309.22.Steven, M. D. (1998). The Sensitivity of the OSAVI Vegetation Index to Observational Parameters. Remote Sensing Environment J. 63 (1), 49-60.23.GAO, B. C. (1996). NDWI a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment J. 58 (3), 257-266.24.Wang, L., & Qu, J. J. (2007). NMDI: A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophysical Research Letters. 34 (20), 57-61.25.Penuelas, J., Filella, I., Biel, C., Serrano, L., & Save, R. (1993). The reflectance at the 950-970 mm region as an indicator of plant water status. Remote Sensing Int. J. 14 (10), 1887-1905.26.Ceccato, P., Flasse, S., & Grégoire, J. M. (2002). Designing a spectral index to estimate vegetation water content from remote sensing data: Part 2. Validation and applications. Remote Sensing of Environment J. 82 (2-3), 198-207.27.Zarco-Tejada, P. J., Ustin, S. L., & Whiting, M. L. (2005). Temporal and spatial relationships between within-field yield variability in cotton and high-spatial hyperspectral remote sensing imagery. Agronmental J.97 (3), 641-653.