ارزیابی مقایسه‌ای مدل‌های IHACRES، AWBM و Tank برای شبیه‌سازی رواناب روزانه در دوره‌های ترسالی و خشکسالی

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد گروه علوم و مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

2 نویسنده مسئول، دانشیار گروه علوم و مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

3 دانشیار گروه علوم و مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

4 دانشجوی دکتری گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران.

5 دانشجوی دکتری گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

چکیده

سابقه و هدف: رواناب متغیر اصلی برای تجزیه و تحلیل هیدرولوژیکی حوزه آبریز است و باتوجه‌به اهمیت آن، برای چندین دهه تحقیقات هیدرولوژیکی بر شبیه‌سازی روابط بارش رواناب متمرکز بوده است که منجر به ارائه مدل‌های فراوانی گردیده است. باتوجه‌به تعدد مدل‌های هیدرولوژیکی، انتخاب یک مدل بهینه از بین انواع مدل‌ها فرآیند ساده‌ای نیست. بدین منظور در پژوهش حاضر پس از انتخاب حوزه آبریز گالیکش از سیل‌خیزترین حوزه‌ها در استان گلستان، عملکرد سه مدل هیدرولوژیکی AWBM، Tank و IHACRES مورد ارزیابی قرار گرفت و پارامترهای مدل‌ها نیز تحلیل حساسیت شد و در نهایت کارایی مدل‌ها در دوره‌های ترسالی و خشکسالی سنجیده شد.
مواد و روش‌ها: مقدار رواناب روزانه خروجی از حوزه برای یک دوره 30 ساله (2019-1989) با استفاده از هر یک از مدل‌های مذکور شبیه‌سازی شده و با استفاده از چهار معیار ضریب ارزیابی نش-ساتکلیف، ریشة میانگین مربعات خطا، ضریب تبیین و میانگین درصد قدر مطلق خطا، عملکرد هر یک از مدل‌ها در دو دوره واسنجی و صحت‌سنجی بررسی شده است. پس از بهینه‌سازی مقادیر تمامی پارامترها، حساسیت پارامترهای هر یک از مدل‌ها تجزیه و تحلیل گردیده است. در نهایت پس از مشخص کردن وضعیت خشکسالی با شاخص SPI، عملکرد هر یک از مدل‌ها در دو دوره ترسالی و خشکسالی مورد بررسی و ارزیابی قرار گرفته است.

یافته‌ها: نتایج حاکی از عملکرد تقریباً مشابه دو مدل بارش-رواناب IHACRES و AWBM است. مدل IHACRES با داشتن ضریب نش-ساتکلیف 73/0 و 75/0 و RMSE 97/2 و 94/2 به‏ترتیب در دو دوره واسنجی و صحت‌سنجی و مدل AWBM نیز با ضریب
نش-ساتکلیف 74/0 و 69/0 و RMSE 92/2 و 24/3 برای دوره‌های واسنجی و صحت‌سنجی عملکرد مطلوبی را نشان داده‌اند، اما مدل Tank در شبیه‌سازی رواناب حوزه موفق نبوده و عملکرد پایین‌تری نسبت به دو مدل دیگر داشته است. تحلیل حساسیت پارامترهای مدل‌ها نیز نشان داد پارامترهای Kbase، H11 و f به‏ترتیب در مدل‌های AWBM، Tank و IHACRES بیشترین حساسیت را به تغییر مقادیر خود دارند. در نهایت مقایسه عملکرد مدل‌ها در دو دوره ترسالی و خشکسالی نشان داد که تمامی مدل‌ها با دقت بالایی موفق به شبیه‌سازی رواناب حوزه در دوره ترسالی شده‌اند به‏طوری که ضریب نش-ساتکلیف 79/0، 74/0 و 78/0 به‏ترتیب برای سه مدل AWBM، Tank و IHACRES عملکرد مورد قبول مدل‌ها را در شبیه‌سازی رواناب در دوره ترسالی نشان می‌دهد. درحالی‌که ارزیابی نتایج، عملکرد ضعیف تمامی مدل‌ها را در دوره خشکسالی نشان داده است و ضریب نش-ساتکلیف به‏دست آمده برای مدل‌ها به‏ترتیب برابر 05/0-، 45/0- و 12/0 است که نشان از ضعف مدل‌ها در شبیه‌سازی مقادیر پایین جریان است.
نتیجه‌گیری: در ارزیابی سه مدل هیدرولوژیکی AWBM، Tank و IHACRES در شبیه‌سازی جریان روزانه مشخص شد که به‏طور کلی با اختلاف کمی مدل IHACRES نسبت به مدل AWBM نتایج بهتری را نشان می‌دهد؛ اما در دوره‌های ترسالی با توجه به ارزیابی‌های صورت گرفته مدل AWBM دقت خوبی داشته‌است درحالی که مدل IHACRES در دوره خشکسالی نسبت به دیگر مدل‌ها عملکرد بهتری را نشان داده است. با توجه به این موضوع می‌توان گفت مدل‌ها در شبیه‌سازی جریانات کم که در دوره‌های خشکسالی اتفاق می‌افتد ضعیف‌تر عمل کردند در حالی که آگاهی از وضعیت جریان رودخانه‌ها در دوره‌های خشکسالی می‌تواند نقش مؤثری را بر مدیریت منابع آبی داشته باشد از این‌رو در جهت افزایش دقت آن‌ها می‌بایست چاره‌ای جست.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparative assessment of IHACRES, AWBM, and Tank models for daily runoff simulation in wet and dry periods

نویسندگان [English]

  • Fatemeh Sadat Rezvani 1
  • khalil ghorbani 2
  • Meysam Salarijazi 3
  • behnaz yazarloo 4
  • Laleh Rezaei Ghaleh 5
1 M.Sc. Graduate, Dept. of Water Sciences and Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
2 Corresponding Author, Associate Prof., Dept. of Water Sciences and Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
3 Associate Prof., Dept. of Water Sciences and Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
4 Ph.D. Student, Dept. of Water Sciences and Engineering, Faculty of Agriculture, Birjand University, Birjand, Iran
5 Ph.D. Student, Dept. of Water Sciences and Engineering, Faculty of Agriculture, Urmia University, Urmia, Iran.
چکیده [English]

Background and objectives: Runoff is the main variable for the hydrological analysis of the watershed, and due to its importance, for several decades, hydrological research has focused on the simulation of rainfall-runoff relationships, which has led to the presentation of many models. Due to the multiplicity of hydrological models, choosing an optimal model among various models is not a simple process. For this purpose, in the present research, after selecting the Galikash watershed from the most flood-prone basins in Golestan province, the performance of three hydrological models AWBM, Tank, and IHACRES were evaluated and the parameters of the models were also analyzed for sensitivity and finally the efficiency of the models in wet and dry periods was examined.
Materials and methods: The amount of daily runoff from the watershed for a period of 30 years (1989-2019) was simulated using each of the mentioned models and using four criteria Nash-Sutcliffe evaluation coefficient, root mean square error, coefficient of determination, and mean absolute percentage error, the performance of each model has been checked in two periods of calibration and validation. After optimizing the values of all the parameters, the sensitivity of the parameters of each model has been analyzed. Finally, after specifying the drought condition with the SPI index, the performance of each model for two wet and dry periods has been investigated and evaluated.
Results: The results indicate that two rainfall-runoff models, IHACRES and AWBM, have almost similar performance. IHACRES model with Nash-Sutcliffe coefficients of 0.73 and 0.75 and RMSE of 2.97 and 2.94, respectively, in two calibration and validation periods and AWBM model with Nash-Sutcliffe coefficients of 0.74 and 0.69 and RMSE of 2.92 and 3.24 for the calibration and validation periods have shown good performance, but the Tank model was not successful in simulating the watershed runoff and its performance is lower than the two other models. The sensitivity analysis of the model parameters also showed that Kbase, H11, and f parameters are the most sensitive to the change of their values in AWBM, Tank, and IHACRES models, respectively. Finally, the comparison of the performance of the models in wet and dry periods showed that all the models have succeeded in simulating the watershed runoff with high accuracy in the wet period, so that the Nash-Sutcliffe coefficient is 0.79, 0.74 and 0.78 for the three AWBM, Tank and IHACRES models, respectively, shows the acceptable performance of the models in simulating the runoff in wet period. While the evaluation of the results has shown the poor performance of all models in dry period, and the Nash-Sutcliffe coefficient obtained for the models is -0.05, -0.45, and 0.12 respectively, which shows the weakness of the models in simulation of the low flow.
Conclusion: In the evaluation of the three hydrological models AWBM, Tank, and IHACRES in daily runoff simulation, it was found that in general, with a small difference, the IHACRES model shows better results than the AWBM model. Also, in wet periods, according to the evaluations, the AWBM model led to good accuracy, while the IHACRES model has shown better performance than other models in dry period. Considering this issue, it can be said that the models performed weaker in simulating low flows that occur during dry periods, while the knowledge of streamflow conditions during dry periods can play an effective role in managing water resources. Therefore, to increase their accuracy, a solution should be found.

کلیدواژه‌ها [English]

  • Galikash Watershed
  • Hydrological model
  • Optimization
  • Rainfall-Runoff
  • Sensitivity Analysis
1.Mohammadi, B., Safari, M. J. S., & Vazifehkhah, S. (2022). IHACRES, GR4J and MISD-based multi conceptual-machine learning approach for rainfall-runoff modeling. Scientific Reports, 12 (1), 12096. 1-21.2.Vidyarthi, V. K., & Jain, A. (2022). Incorporating non-uniformity and non-linearity of hydrologic and catchment characteristics in rainfall–runoff modeling using conceptual, data-driven, and hybrid techniques. Journal of Hydroinformatics, 24 (2), 350-366.3.Hsu, K. L., Gupta, H. V., & Sorooshian, S. (1995). Artificial neural network modeling of the rainfall-runoff process. Water Resources Research, 31 (10), 2517-2530.4.Rezvani, F. S., Ghorbani, K., Salarijazi, M., Rezaei Ghaleh, L., & Yazarloo, B. (2023). Comparative assessment of Sacramento, SMAR, and SimHyd models in long-term daily runoff simulation. Water and Soil Management and Modelling, 3 (1), 279-297. [In Persian]
5.Kokkonen, T. S., & Jakeman, A. J. (2001). A comparison of metric and conceptual approaches in rainfall‐runoff modeling and its implications. Water Resources Research, 37 (9), 2345-2352.6.Zhai, A., Fan, G., Ding, X., & Huang, G. (2022). Regression tree ensemble rainfall–runoff forecasting model and its application to Xiangxi River, China. Water, 14 (3), 463. 1-12.7.Sadegh, M., Agha Kouchak, A., Flores, A., Mallakpour, I., & Nikoo, M. R. (2019). A multi-model nonstationary rainfall-runoff modeling framework: analysis and toolbox. Water Resources Management, 33 (9), 3011-3024.8.Yang, Q., Zhang, H., Wang, G., Luo, S., Chen, D., Peng, W., & Shao, J. (2019). Dynamic runoff simulation in a changing environment: A data stream approach. Environmental Modelling & Software, 112, 157-165.9.Li, H., Zhang, Y., & Zhou, X. (2015). Predicting surface runoff from catchment to large region. Advances in Meteorology, 2015, 1-13.10.Herath, H. M. V. V., Chadalawada, J., & Babovic, V. (2021). Hydrologically informed machine learning for rainfall–runoff modelling: towards distributed modelling. Hydrology and Earth System Sciences, 25 (8), 4373-4401.‏11.Jakeman, A. J., Littlewood, I. G., & Whitehead, P. G. (1990). Computation of the instantaneous unit hydrograph and identifiable component flows with application to two small upland catchments. Journal of Hydrology, 117 (1-4), 275-300.12.Boughton, W. C. (1995). An Australian water balance model for semiarid watersheds. Journal of Soil and Water Conservation, 50 (5), 454-457.13.Sugawara, M. (1974). Tank model with snow component. Study Report of National Research Center for Disaster Prevention. 293 p.14.Zarin, H., Moghaddamnia, A. R., Nam Dorost, J., & Mosaedi, A. (2013). Simulation of outlet runoff in ungauged catchments by using AWBM Rainfall-Runoff Model. Journal of Water and Soil Conservation, 20 (2), 195-208. [In Persian]
15.Balvanshi, A., & Tiwari, H. L. (2015). Rainfall runoff estimation using RRL toolkit. International Journal of Engineering Research & Technology, 4 (5), 595-599.16.Onyutha, C. (2016). Influence of hydrological model selection on simulation of moderate and extreme flow events: a case study of the Blue Nile basin. Advances in Meteorology, 2016, 1-28.17.Amireche, M., Merabtene, T., Bermad, A., & Boutoutaou, D. (2017). Comparative assessment between GR model and tank model for rainfall-runoff analysis using Kalman filter-application to Algerian basins. In MATEC Web of Conferences, 120, 05006.18.Rezaie, H., Jabbari, A., Behmanesh, J., & Hessari, B. (2017). Modelling the daily runoff of Nazloo Chai watershed
at the west side of Urmia Lake. Journal of Water and Soil Conservation, 23 (6), 123-141. [In Persian]
19.Borzì, I., Bonaccorso, B., & Fiori, A. (2019). A modified IHACRES rainfall-runoff model for predicting the hydrologic response of a river basin connected with a deep groundwater aquifer. Water, 11 (10), 2031. 1-15.20.Trivedi, A., Galkate, R. V., Gautam, V. K., & Pyasi, S. K. (2021). Development of RRL AWBM model and investigation of its performance, efficiency and suitability in Shipra River Basin. Journal of Soil and Water Conservation, 20 (2), 160-167.21.Duan, Q., Ajami, N. K., Gao, X., & Sorooshian, S. (2007). Multi-model ensemble hydrologic prediction using Bayesian model averaging. Advances in Water Resources, 30 (5), 1371-1386.22.Sohrabian, E., Meftah Halghi, M., Ghorbani, K., Golian, S., & Zakerinia, M. (2015). Effects of climate change on the discharge basin hydrology model (case study: Galikesh Watershed in Golestan). Journal of Water and Soil Conservation, 22 (2), 111-125. [In Persian]
23.Tatar, R., Ghorbani, K., Meftah halghi, M., & Salarijazi, M. (2021). Rainfall-Runoff modeling using Deep Learning model (Case Study: Galikesh Watershed). Journal of Water and Soil Resources Conservation, 10 (2), 55-68. [In Persian]
24.Tigkas, D., Vangelis, H., & Tsakiris, G. (2015). DrinC: a software for drought analysis based on drought indices. Earth Science Informatics, 8, 697-709.‏25.Bernard, B., Vincent, K., Frank, M., & Anthony, E. (2013). Comparison of extreme weather events and streamflow from drought indices and a hydrological model in River Malaba, Eastern Uganda. International Journal of Environmental Studies, 70 (6), 940-951.26.McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th Conference on Applied Climatology. 17, 179-183.27.Sadeghi, S. H., Kalehoee, M., Chamani, R., & Haji, K. Effectability of SPI-based Watershed Health Index from ata Length. Iranian Journal of Watershed Management Science and Engineering, 17 (61), 52-61. [In Persian]
28.Pazaveh, A. (2023). Investigation of drought and wet season in Chahbahar city using SPI index. Geography and Human Relationships, 5 (4), 110-127. [In Persian]
29.Li, Y. (2021). Performance evaluation of Tanh and AWBM rainfall-runoff models. In IOP Conference Series: Earth and Environmental Science, 768 (1), 012048. 1-8.30.Podger, G. (2004). Rainfall Runoff Library (RRL). Catchment Modeling Toolkit prepared by the© CRC for Catchment Hydrology. Australia. 110 p.31.Esmaeili-Gisavandani, H., Lotfirad, M., Sofla, M. S. D., & Ashrafzadeh, A. (2021). Improving the performance of rainfall-runoff models using the gene expression programming approach. Journal of Water and Climate Change, 12 (7), 3308-3329.32.Mohammadivand, M. R., Araghinejad, S., Ebrahimi, K., & Modaresi, F. (2019). Performance Evaluation of AWBM, Sacramento and SimHyd models in Runoff Simulation of the Amameh Watershed using Automatic Calibration Optimization Method of Genetic Algorithm. Iranian Journal of Soil and Water Research, 50 (7), 1759-1769. [In Persian]
33.Kwon, M., Kwon, H. H., & Han, D. (2020). A hybrid approach combining conceptual hydrological models, support vector machines and remote sensing data for rainfall-runoff modeling. Remote Sensing, 12 (11), 1801. 1-21.34.Suga Wara, M. (1979). Automatic calibration of the tank model/ L'étalonnage automatique d'un modèle à cisterne. Hydrological Sciences Journal, 24 (3), 375-388.35.Croke, B. F. W., Andrews, F., Spate, J., & Cuddy, S. M. (2005). IHACRES User Guide. Technical Report 2005/19. Second Edition. (Canberra: iCAM, School of Resources, Environment and Society, The Australian National University)
36.Dye, P. J., & Croke, B. F. (2003). Evaluation of streamflow predictions by the IHACRES rainfall-runoff model in two South African catchments. Environmental Modelling & Software, 18 (8-9), 705-712.‏37.Dougherty, E. R., Kim, S., & Chen, Y. (2000). Coefficient of determination in nonlinear signal processing, Signal Processing, 80, 2219-2235.38.Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models: part I – A discussion of principles. Journal of Hydrology,
10 (3), 282-290.39.Lujano, E., Lujano, R., Huamani, J. C., & Lujano, A. (2023). Hydrological modeling based on the KNN algorithm: An application for the forecast of daily flows of the Ramis river, Peru. Tecnología y ciencias del agua, 14 (2), 169-203.40.Ghorbani, M., Dinpashoh, Y., & Moayeri, M. (2020). Appraisal of the Generalized Likelihood Uncertainty Estimation in HyMod and HBV models (Case study: Chehelchai catchment in Golestan province). Journal of Water and Soil Conservation, 27 (3), 23-43. [In Persian]
41.Deb, P., & Kiem, A. S. (2020). Evaluation of rainfall–runoff model performance under non-stationary hydroclimatic conditions. Hydrological Sciences Journal, 65 (10), 1667-1684.42.Jaiswal, R. K., Ali, S., & Bharti, B. (2020). Comparative evaluation of conceptual and physical rainfall–runoff models. Applied Water Science, 10, 1-14.43.Vardian, F. (2012). Runoff simulation using IHACRES rainfall-runoff model in several catchment in Iran. M.Sc. Thesis, Sari Agricultural Sciences
and Natural Resources University, Mazandaran, Iran. [In Persian]
44.Yildirim, G., Haque, M., & Rahman, A. (2016). Variability in calibration and validation data lengths in relation to obtaining the best parameter set of a hydrological model. In Proceedings of the 37th Hydrology & Water Resources Symposium 2016: Water, Infrastructure and the Environment, New Zealand. 439-445.45.Mubialiwo, A., Abebe, A., & Onyutha, C. (2021). Performance of rainfall–runoff models in reproducing hydrological extremes: a case of the River Malaba sub-catchment. SN Applied Sciences, 3, 1-24.46.Amiri, E., & Roudbari Mousavi, M. M. (2016). Evaluation of IHACRES hydrological model for simulation of daily flow (case study Polrood and Shalmanrood rivers). Iranian journal of Ecohydrology, 3 (4), 533-543. [In Persian]