تحلیل حساسیت و ارزیابی مدل اکوکراپ در شبیه‌سازی بهره‌وری مصرف آب و عملکرد کینوا تحت مدیریت‌های مختلف مقدار و شوری آب آبیاری و کاربرد بیوچار و نانوبیوچار

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانش‌آموخته دکتری گروه مهندسی آب، دانشکده آب‌ و خاک، دانشگاه زابل، زابل، ایران.

2 نویسنده مسئول، دانشیار گروه مهندسی آب، دانشکده آب و خاک، دانشگاه زابل، زابل، ایران

3 دانشجوی دکتری دانشگاه آمریتا، هندوستان.

چکیده

سابقه و هدف: مدل‌های گیاهی ابزار مناسبی برای شبیه‌سازی پارامترهای مهم کشاورزی می‌باشند. با توجه به وجود تنش‌های محیطی در هر منطقه، مدل‌های گیاهی باید در هر منطقه ارزیابی شده و مورد تأیید قرار بگیرند. در سال‌های اخیر مدل‌های زیادی برای بررسی روابط آب و خاک و گیاه مورد استفاده قرار گرفته است. یکی از این مدل‌ها، مدل اکوکراپ است. مدل مذکور بایستی برای هر محصول و در هر منطقه خاص واسنجی و ارزیـابی شود. اساس این مدل عکس‌العمل عملکرد محصول نسبت به آب مصرفی است و با استفاده از متغیرهای اقلیمـی، گیـاه، خـاک و مـدیریتی، عملکـرد محصول را شبیه‌سازی می‌کند. پارامترهای به‌کار رفته در مدل تحت تأثیر شرایط مختلف محیطی و مدیریتی تغییر می‌کند. تحلیل حساسیت به محققین کمک می‌کند تا اطلاعات کافی در خصوص تأثیر هر پارامتر و مقدار تغییرات آن در مرحله واسنجی داشته باشند.
مواد و روش‌ها: تحقیق در قالب طرح فاکتوریل کاملا تصادفی در نیمه دوم آبان 1400 و 1401 در گلخانه اجرا شد. تیمارها شامل سه تیمار آب آبیاری (60، 80 و 100 درصد مقدار آب آبیاری به‌ترتیب، I1، I2 و I3)، سه سطح شوری (1، 4 و 7 دسی زیمنس بر متر به-ترتیب S1، S2 و S3)، دو نوع ماده اصلاحی (بیوچار (B) و نانوبیوچار (NB)) و سه سطح بیوچار و نانوبیوچار (0، 2 و 4 درصد وزنی خاک گلدان) بود. در پایان فصل برداشت عملکرد محصول اندازه‌گیری و بهره‌وری مصرف آب محاسبه شد. از داده‌‌های زراعی سال اول برای واسنجی مدل و از داده‌های زراعی سال دوم برای صحت‌سنجی مدل استفاده شد. برای آزمون دقت و بررسی کارایی مدل از آماره‌های خطای جذر میانگین مربعات خطا (RMSE)، میانگین خطای اریب (MBE)، ضریب تبیین (R2) و درصد خطای نسبی (RE) استفاده شد. همچنین در تحقیق تحلیل حساسیت مدل به پارامترهای رطوبت در ظرفیت زراعی، پژمردگی و در حالت اشباع، ضریب گیاهی برای تعرق، عمق موثر ریشه، حد بالا و پایین ضریب تخلیه آب خاک برای توسعه گیاه، بیشینه رشد کانوپی، ضریب رشد و کاهش پوشش و بهره‌وری آب نرمال شده مورد بررسی قرار گرفت.
یافته‌ها: با توجه به مقایسه مقادیر اندازه‌گیری شده و شبیه‌سازی شده عملکرد و بهره‌وری مصرف آب کینوا و محاسبه شاخص‌های ارزیابی آماری در هر دو مرحله واسنجی و صحت سنجی می‌توان بیان داشت که مدل اکوکراپ به‌خوبی توانسته است عملکرد و بهره‌وری مصرف آب را در شرایط استفاده از آب با مقادیر و کیفیت‌های مختلف و اصلاح‌کننده های بیوچار و نانوبیچار شبیه‌سازی کند. مقادیر درصد خطای نسبی (RE)، جذر میانگین مربعات خطا (RMSE)، میانگین خطای اریب (MBE) و ضریب تبیین (R2) برای عملکرد در مرحله صحت‌سنجی با ماده اصلاحی بیوچار به‌ترتیب 66/0، 38/33، 12/24 و 98/0 و برای بهره‌وری مصرف آب در این مرحله به-ترتیب 29/0، 33/0، 11/0 و 96/0 به‌دست آمد. مقادیر درصد خطای نسبی (RE)، جذر میانگین مربعات خطا (RMSE)، میانگین خطای اریب (MBE) و ضریب تبیین (R2) برای عملکرد در مرحله صحت‌سنجی با ماده اصلاحی نانوبیوچار به‌ترتیب 12/0، 08/22، 61/5 و 98/0 و برای بهره‌وری مصرف آب در این مرحله به‌ترتیب 17/0، 29/0، 05/0 و 96/0 محاسبه شد. با توجه به مقادیر کمتر آماره‌های خطا در شرایط استفاده از ماده اصلاحی نانوبیوچار، می‌توان گفت مدل در این شرایط بهتر توانسته است عملکرد و بهره‌وری مصرف آب را شبیه‌سازی کند.
نتیجه‌گیری: با توجه به نتایج به‌دست آمده می‌توان بیان داشت که مدل اکوکراپ با یک سطح اطمینان قابل قبول می‌تواند در شبیه‌سازی عملکرد و بهره‌وری مصرف آب گیاه کینوا تحت تیمارهای مختلف کمی و کیفی آب آبیاری و اصلاح کننده‌های خاک مورد استفاده قرار گیرد و به عنوان یک ابزار توانمند و کارامد در جهت انتخاب مدیریت بهینه آبیاری به کشاورزان، طراحان، متخصصان و مدیران کشاورزی کمک نماید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Sensitivity analysis and evaluation of Aquacrop model in simulating water productivity and quinoa yield under different irrigation water amount and salinity management and Biochar and NanoBiochar application

نویسندگان [English]

  • Ommolbnain Toorajzadeh 1
  • Halimeh Piri 2
  • Masoud Barati 3
1 Ph.D. Graduate, Dept. of Water Engineering, Faculty of Water and Soil, University of Zabol, Zabol, Iran.
2 Corresponding Author, Associate Prof., Dept. of Water Engineering, Faculty of Water and Soil, University of Zabol, Zabol, Iran.
3 Ph.D. Student, Amrita Vishwa Vidyapeetham, India.
چکیده [English]

Background and purpose: Plant models are a suitable tool for simulating important agricultural parameters. Due to the existence of environmental stresses in each region, plant models should be evaluated and approved in each region. In recent years, many models have been used to investigate the relationship between water, soil and plants. One of these models is AquaCrop model. The mentioned model should be measured and evaluated for each product and in each specific region. The basis of this model is the reaction of the yield to water productivity, and it simulates the yield by using climate, plant, soil and management variables. Sensitivity analysis helps researchers to have enough information about the effect of each parameter and the amount of its changes in the calibration stage.
Materials and methods: The research was carried out in the form of a completely randomized factorial design in the second half of November 1400 and 1401 in the greenhouse. The treatments include three irrigation water treatments (60, 80, and %100 of irrigation water, I1, I2, and I3, respectively), three salinity levels (1, 4, and 7 dS/m, S1, S2, and S3, respectively). There were two types of amendment materials (Biochar (B) and Nanobiochar (NB)) and three levels of Biochar and Nanobiochar (0, 2 and 4% ). At the end of the harvest season, the yield of the product was measured and the water productivity was calculated.Crop data of the one year were used for model calibration and crop data of the second year were used for model validation. The root mean square error (RMSE), mean bias error (MBE), R2 and relative error percentage (RE) were used to test the accuracy and effectiveness of the model. Also, in the research, the sensitivity of the model to the humidity parameters in crop capacity, wilting and in saturated state, plant coefficient for transpiration, effective root depth, upper and lower limit of soil water discharge coefficient for plant development, maximum canopy growth, growth coefficient and reduction of cover and Normalized water productivity was investigated.
Findings: According to the comparison of the measured and predicted values of the yield and water productivity of quinoa and the calculation of statistical evaluation indices in both calibration and validation stages, it can be stated that the AquaCrop model has been able to simulate the yield and water productivity in the conditions of using water with different amounts and qualities and Biochar and nanBiochar modifiers. Relative error percentage (RE), root mean square error (RMSE), mean bias error (MBE) and coefficient of determination (R2) for the yield in the validation stage with Biochar amendment material are 0.66, 33.38, respectively. 24.12 and 0.98 and 0.29, 0.33, 0.11 and 0.96 were obtained for water productivity in this stage, respectively. Relative error percentage (RE), root mean square error (RMSE), mean bias error (MBE) and R2 for the yield in validation stage with NanoBiochar amendment material are 0.12, 22.08, respectively. 5.61 and 0.98 and for water productivity at this stage, 0.17, 0.29, 0.05 and 0.96 were calculated respectively. Considering the lower values of the error statistics in the conditions of using the NanoBiochar amendment, it can be said that the model has been able to simulate the yield and water productivity better in these conditions.
Conclusion: According to the obtained results, it can be stated that the Aquacrop model is an acceptable reliable level using the simulation of the yield and water productivity of quinoa plant under different quantitative and qualitative treatments of irrigation water and soil amendment are used and help farmers, designers, experts and agricultural managers as a powerful and efficient tool to choose optimal irrigation management.

کلیدواژه‌ها [English]

  • cover growth factor
  • cover reduction factor
  • maximum canopy growth
  • normalized water productivity
1.Jacobsen, S. E., Liu, F., & Jensen, C. R. (2009). Does rootsourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa). 5, 45-52.2.Bahrami, M., Talebnejad, R., Sepaskhah, A. R., & Bazile, D. (2022). Irrigation regimes and nitrogen rates as the contributing factors in quinoa yield to increase water and nitrogen efficiencies. Plants, 11 (15), 2048.3.Bonales-Alatorre, E., Pottosin, I., Shabala, L., Chen, Z. H., Zeng, F., Jacobsen, S. E., & Shabala, S. (2013). Differential activity of plasma and vacuolar membrane transporters contributes to genotypic differences in salinity tolerance in a halophyte species, chenopodium quinoa. International Journal of Molecular Sciences, 14 (5), 9267-9285.4.Steduto, P., Hsiao, T. C., Raes, D., & Fereres, E. (2009). AquaCrop: The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy Journal, 101 (3), 426-437.5.Heng, L. K., Hsiao, T. C., Evett, S., Howell, T., & Steduto, P. (2009). Validating the FAO AquaCrop model for Irrigated and Water Deficient field maize, Agronomy Journal. 101 (3), 488-498.6.Iqbal, M. A., Shen, Y., Stricevic, R., Pei, H., Sun, H., Amiri, E., Penas, A., & Rio, S. (2014). Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation. Agricultural Water Management. 135, 61-72.7.Alizadeh, H., Nazari, B., Parsi-Nejad, M., Ramezani-Etdali, H., & Janbaz, H. (2018). Evaluation of AquaCrop model in wheat irrigation management in Karaj region. Iran Irrigation and Drainage, 4, 273-283. [In Persian]8.Ebrahimipak, N. A., Egdernezhad, A., Tafteh, A., & Ahmadee, M. (2019). Evaluation of AquaCrop, WOFOST, and CropSyst to simulate rapeseed yield. Iranian Journal of Irrigation and Drainage, 13 (3), 715-726. [In Persian]9.Van Gaelen, H., Tsegay, A., Delbecque, N., Shrestha, N., Garcia, M., Fajardo, H., Miranda, R., Vanuytrecht, E., Abrha, B., Diels, J., & Raes, D. (2014). Asemiquantitative approach for modelling crop response to soil fertility: evaluation of the Aqua crop procedure. Journal of Agricultural Science, 153 (7), 1218-1233.10.Akumaga, U., Tarhule, A., & Yusuf, A. A. (2017). Validation and testing of the FAO AquaCrop model under different levels of nitrogen fertilizer on rainfed maize in Nigeria, West Africa. Agricultural and Forest Meteorology, 232, 225-234.11.Karimi, S., Egdernezhad, A., & Nakhjavanimoghaddam, M. (2021). Assessing Aquacrop Model Accuracy for Simulation of Corn Yield and Water Use Efficiency in Different Plant Densities and Water Amount. Environment and water engineering,
7 (1), 59-72.12.Emdad, M. R., Tafteh, A., & Ebrahimipak, N. (2022). Efficiency of Aquacrop Model in Simulating Yield of Quinoa in Different Deficit Irrigation Managements. Journal of Water and Soil, 36 (3), 319-331. [In Persian]13.Geerts, S., Raes, D., Garcia,M., Miranda, R., Cusicanqui, J., Taboada, C., Mendoza, J., Huanca, R., Mamani, A., Condori, O., Mamani, J., Morales, B., Osco, V., & Steduto, P. (2009). Simulating Yield Response of Quinoa to Water Availability with AquaCrop. Agronomy Journal, 101 (3), 499-508.14.Alvar-Beltrán, J., Gobin, A., Orlandini, S., & Dalla, A. (2021). AquaCrop parametrisation for quinoa in arid environments. Italian Journal of Agronomy, 16, 1749.15.Guo, D., Zhao, R., Xing, X., & Ma, X. (2019). Global sensitivity and uncertainty analysis of the AquaCrop model for maize under different irrigation and fertilizer management conditions. Archives of Agronomy and Soil Science, 1-19.16.Vanuytrecht, E., Raes, D., & Willems, P. (2014). Global sensitivity analysis of yield output from the water productivity model. Environmental Modelling & Software, 51, 323-332.17.Jin, X., Li, Z., Nie, C., Xu, X., Feng, H., Guo, W., & Wang, J. (2018). Parameter sensitivity analysis of the AquaCrop model based on extended fourier amplitude sensitivity under different agrometeorological conditions and application. Field Crops Research, 226, 1-15.18.Rahimi Khoob, H., Sohrabi, T., & Delshad, M. (2019). Sensitivity analysis of basil plant growth parameters in AquaCrop model under different nitrogen fertilizer stresses. Iran Water and Soil Research, 51 (6), 1341-1351. [In Persian]19.Karimi Avargani, H., Rahimikhoob, A., & Nazari Fard, M. (2019). Sensitivity Analysis of Aquacrop Model for Barley in Pakdasht Region. Journal of Water and Soil Science. 23 (3), 53-63. [In Persian]20.Payero, J. O., Melvin, S. R., Irmak, S., & Tarkalson, D. (2009). Yield response of corn to deficit irrigation in a semiarid climate. Agric. Water Manage. 84, 101-112.21.Raes, D., Steduto, P., Hsiao, T. C., & Fereres, E. (2009). AquaCrop-the FAO crop model to simulate yield response to water II. Main algorithms and software description. Agronomy Journal, 101, 438-447.22.Geerts, S., & Raes, D. (2009). Deficit irrigation as on-farm strategy to maximize crop water productivity in dry areas. Agricultural Water Management, 96, 1275-1284.23.Eghderanjad, A., Ebrahimi Pak, N. A., Tafte, A., & Ahmadi, M. (2017). Rapeseed irrigation planning using AquaCrop model in Qazvin Plain. Water Management in Agriculture, 5 (2), 63-54. [In Persian]24.Neysi, K., Egdernezhad, A., & Abbasi, F. (2023). Evaluation of AquaCrop model for corn simulation under different management of nitrogen fertilizer in karaj. Water and Soil Management and Modeling, 3 (1), 26-41. [In Persian]25.Kheir, A. M. S., & Hassan, M. A. A. (2016). Performance Assessment of the FAO Aquacrop Model for Maize Yield, Biomass and Water Productivity along the River Nile, Egypt. J. Soil Sci. Agric. Eng. Mansoura Univ. 7 (10), 721-728.26.Khoshravesh, M., Mostafazadeh-Fard, B., Heidarpour, M., & Kiani, A. R. (2013). AquaCrop model simulation under different irrigation water and nitrogen strategies. Water Science and Technology, 67 (1), 232-238.27.Mohammadi, M., Hero, B., Judgement, K., Ansari, H., & Shahidi, A. (2014). Validation of AquaCrop model in order to simulate the performance and efficiency of water consumption of winter wheat under simultaneous conditions of salinity and drought stress. Water and Soil Journal (Agricultural Sciences and Industries), 29 (1), 67-84. [In Persian]
28.Abedi, M., Eghderanjad, A., & Ebrahimipak, N. A. (2018). Evaluation of AquaCrop model in simulating grain yield and wheat water consumption efficiency under different irrigation conditions in the field. Iran Scientific Journal of Agriculture and Plant Breeding, 15 (1), 1-14.29.Shabani, A., Zakarinia, M., & Hossam, M. (2018). Evaluation of the effectiveness of the AquaCrop model in simulating the yield of Williams cultivar soybeans in Golestan province under salinity stress caused by Caspian Sea water and different irrigation levels. Irrigation Science and Engineering, 42 (1), 62-49. [In Persian]30.Kale, S. (2016). Assessment of aquacrop model in the simulation of wheat growth under different water regimes. Scientific Papers. Series A. Agronomy, Vol. LIX.31.Ahmadi, S. H., Mosallaeepour, E., Kamgar Haghighi, A. K., & Sepaskhah, A. R. (2015). Modeling maize yield and soil water content with AquaCrop under full and deficit irrigation managements. Water Resources Management. 29, 2837-2853. [In Persian]32.Andarziana, B., Bannayanb, M., Stedutoc, P., Mazraeha, H., Barati,
M. E., Barati, M. A., & Rahnama, A. (2011). Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran. Agricultural Water Management,100, 1-8.33.Ebrahimi-Pak, N. A., Ahmadi, M., Eghderanjad, A., & Khashai-Siyuki, A. (2017). Evaluation of AquaCrop model in simulating saffron performance under different scenarios of low irrigation and zeolite consumption. Water and Soil Resources, 8 (1), 129-118. [In Persian]34.Hosseini, S. I., Khosh Ravesh, M., Ziyatbar Ahmadi, M. Kh., & Gadami Firouzabadi, A. (2015). Soybean performance evaluation with AquaCrop model under the influence of salinity and low irrigation management. Journal of Water Research in Agriculture,
30 (3), 372-361. [In Persian]35.Mir, A., Piri, H., & Naserin, A. (2021). The effect of different levels of wheat biochar and water stress on the quantitative and qualitative characteristics of Carla (bitter melon) in pots. Journal of Water Research
in Agriculture,
35 (2), 184-170. [In Persian]36.Gao Lu, S., Fang, S. F., & Tong, Z. Y. (2014). Effect of rice husk biochar and charcoal fly ash on some physical properties of expansive clayey soil (Vertisol). Catena. 114, 37-44.37.Salemi, H., Mohd Soom, M. A., Lee, T. S., Mousavi, S. F., Ganji, A., & Kamil Yusoff, M. (2011). Application of AquaCrop model in deficit irrigation management of Winter wheat in arid region. African Journal of Agricultural Research, 610, 2204-2215.