ترکیب روش‌های درون یابی و محصولات بارش ماهواره ای TRMM به منظور افزایش دقت نقشه‌های همبارش در استان مازندران

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجو دانشگاه علوم کشاورزی و منابع طبیعی ساری

2 استادیار دانشگاه علوم کشاورزی و منابع طبیعی ساری

3 سازمان آب و برق خوزستان

چکیده

سابقه و هدف: تخمین مکانی و تشخیص پاراکندگی بارش، عمدتا توسط روشهای زمین آمار و تصاویر ماهواره ای انجام می شود. امروزه اقبال زیادی از محصولات بارش ماهواره ای در تهیه نقشه های همبارش شده است. این محصولات با استفاده از تصاویر ماهواره ای به تخمین بارش در نقاط فاقد داده می‌پردازد و معمولا با خطای زیادی همراه بوده و نیاز به واسنجی دارند. روش‌های درون‌یابی نیز با استفاده از داده‌های واقعی ثبت شده به تخمین بارش می‌پردازند. بنظر می‌رسد ترکیب روش‌های درون‌یابی و تصاویر ماهواره‌ای می‌تواند در افزایش دقت نقشه‌های همبارش بخصوص در مناطق با توپوگرافی پیچیده مانند استان مازندران موثر باشد.
مواد و روش‌ها: در این پژوهش در راستای ارزیابی روش‌های مختلف تخمین بارش استان مازندران و ترکیب تصاویر ماهواره ای با روش‌های درونیابی از داده‌های 21 ایستگاه سینوپتیک و باران‌سنجی و از 24 تصویر ماهانه و 2 تصویر سالانه ماهواره‌ی TRMM در سال‌های 2012 و 2015 استفاده شد، که تفکیک مکانی این ماهواره 25/0*25/0 درجه می‌باشد. روش‌های درون یابی مورد بررسی شامل کریجینگ، وزنی عکس فاصله بوده و همچنین دقت محصولات بارش ماهواره TRMM نیز بررسی شد. به علاوه برای افزایش دقت نقشه های همبارش از رابطه رگرسیون خطی چندگانه برای ترکیب تصاویر ماهواره‌ای با متغیرهای کمکی طول و عرض جغرافیایی و ارتفاع استفاده شد. ارزیابی روش‌ها با استفاده از شاخص‌های میانگین مربعات خطا و میانگین خطای اریب و تحلیل رگرسیونی صورت گرفت. همچنین نقشه‌های هم بارش سالانه استان نیز برای دو سال 2012 و 2015 ترسیم و تحلیل شد.
یافته‌ها: در این پژوهش 5 مدل تئوری نیم تغییرنما بر داده‌ها برازش داده شد که مدل‌های نمایی و کروی به عنوان مناسب ترین مدل نیم تغییرنما انتخاب شدند. همچنین ضریب تعیین مدل نیم تغییرنمای منتخب و نسبت تغییرات ساختار‌دار به تغییرات کل وضعیت نسبتا مناسب ساختار مکانی داده های بارش را نشان داد و دامنه تاثیر داده‌های بارش در حدود 80 کیلومتر بدست آمد. ضرایب همبستگی پارامترهای کمکی و بارش در اکثر ماه‌ها نتایج قابل قبولی ارائه داد و تقریبا در بیش از 50 درصد ماه های مورد بررسی معنادار بود که در نتیجه ضرایب تعیین معادله رگرسیونی گرادیان چهار بعدی نیز مقادیر راضی کننده را نشان داد بطوریکه متغیرهای کمکی مورد استفاده بین 10 تا بیش از 70 درصد از تغییرات بارش را توجیه نمودند. بررسی شاخص ارزیابی خطا نشان داد که روش‌های درون‌یابی و داده‌های شبکه ماهواره‌ای TRMM تخمین مناسبی از بارش استان نداشته و استفاده از متغییرهای کمکی در روش گرادیان خطی چهار بعدی توانسته باعث کاهش خطای تخمین گردد به طوری که خطای تخمین بارش را 20 تا 40 درصد کاهش داد. بررسی شاخص اریبی نشان داد که داده‌های شبکه بارش TRMM برخلاف همبستگی خوب با داده‌های مشاهده‌ای تا حدود 5 برابر بیشتر از سایر روش‌های درونیابی دارای خطای کم برآوردی است اما ترکیب داده‌های شبکه TRMM با سایر متغیرهای کمکی در روش گرادیان 4 بعدی خطای اریبی را به صفر رساند. تحلیل رگرسیونی روش‌های مختلف درونیابی نیز حاکی از برتری چشمگیر روش گرادیان 4 بعدی بود که شیب خط روش گرادیان 4 بعدی بیش از 3 برابر روش‌های زمین آماری بوده که نشان دهنده درک دقیقتر روش گرادیانی در تشخیص حلقه‌های کم بارش و پربارش منطقه است.
نتیجه‌گیری: نتایج بدست آمده حاکی از برتری روش گرادیان 4 بعدی در تخمین مکانی بارش در استان مازندران بوده و نقش متغیرهای کمکی در افزایش دقت نقشه‌های همبارش را نشان داد به طوری که استفاده از روش منتخب سبب کاهش 30 درصدی خطای تخمین روش‌های زمین آماری و کاهش 40 درصدی خطای شبکه TRMM شد. نتایج این پژوهش نشان داد که ترکیب محصولات بارش ماهواره‌ای با روش‌های درون‌یابی منجر به تخمین دقیقتر بارش ارتفاعات و نقاط فاقد داده ثبت شده بارش خواهد شد.

کلیدواژه‌ها


عنوان مقاله [English]

Combining interpolation methods and precipitation products of TRMM satellite to increase the accuracy of rainfall maps in Mazandaran province

نویسندگان [English]

  • Alireza Yosefi Kebriya 1
  • Mehdi Nadi 2
  • Mozhdeh Jamei 3
1 Student of Sari University of Agricultural Sciences and Natural Resources
2 Sanru, Irrigation Dept
3 Khuzestan Water and Power Organization
چکیده [English]

Background and objectives: The most common methods used to estimate and spatialise precipitation data are geostatistic methods and satellite images. Today, satellite rainfall products have become very popular in preparing rainfall maps. These products use satellite imagery to estimate precipitation in places with no observed data and are usually associated with a large error and require calibration. Interpolation methods also estimate precipitation data using recorded data. It seems that the combination of interpolation methods and satellite images can be effective in increasing the accuracy of rainfall maps, especially in areas with complex topography such as Mazandaran province
Materials and methods: In this study, in order to evaluate different methods of estimating precipitation in Mazandaran province and combining satellite images with interpolation methods, precipitation data from 21 synoptic and rain gauge stations and 24 monthly images and 2 annual TRMM satellite images were used in 2012 and 2015 that the spatial resolution of this satellite product is 0.25 * 0.25 degrees. The studied interpolation methods included Kriging and Inverse Distance Weighting. Also the accuracy of rainfall products of TRMM satellite was investigated. In addition, to increase the accuracy of rainfall maps, multiple linear regression were used to combine satellite images with latitude, longitude and altitude covariate. The investigated methods were evaluated using the Root Mean Square Error and Mean Bias Error indices and regression analysis. Also the annual rainfall maps of the province for 2012 and 2015 were drawn and analysed.
Results: In this study, 5 theoretical semivariogram models were fitted to the data, that the spherical and exponential models was selected as appropriate models. Also the coefficient of determination of selected variogram model and the ratio of structured part to total variation showed a relatively strong variography anlysis and the effective range of precipitation data wasobtained about 80 km. Correlation coefficients of covariates and precipitation in most months provided acceptable results and were significant in almost more than 50% of the studied months. As a result, the coefficients of determination of four-dimensional gradient regression equation also showed satisfactory values, so that the used covariates explained between 10 and more than 70% of the precipitation variations. evaluation of investigated methods showed that interpolation models and TRMM satellite network data are not efficient in estimation of precipitation in the province and the use of covariates in the gradient method could reduce the error estimation of rainfall data by 20 to 40 percent. Investigation of Bias error showed that TRMM precipitation network data, despite good correlation with observational data, has about 5 times more underestimation error than other interpolation methods, but the combination of TRMM network data with other covariates in the 4-dimensional gradient method has reduced the MBE to zero. Regression analysis of the studied methods showed a significant advantage of the 4-dimensional gradient method that the slope of this method is 3 times more than the geostatistical methods, which shows the performance of this method in detecting low and high rainfall rings in Mazandaran province.
Conclusion: The results showed the superiority of the 4-dimensional gradient method in spatial rainfall estimation of Mazandaran province and showed the role of covariates in increasing the accuracy of rainfall maps, that use of the selected method reduced the estimation error of geostatistical methods and TRMM network data by 30% and 40% respectively. The results of this study showed that the combination of satellite raifall products with interpolation methods will lead to more accurate estimation of precipitation in highlands and the points with no recorded rainfall data.

کلیدواژه‌ها [English]

  • Geostatistics
  • precipitation map
  • four-dimensional linear gradient
  • accurate precipitation estimation
1.Alexakis, D.D., and Tsanis, I.K.2016. Comparison of multiple linear regression and artificial neural network models for downscaling TRMM precipitation products using MODISdata. Environmental Earth Sciences.75: 14. 67-77.
2.Amini, M., Dezful, A., and Azadi, M. 2019. Comparison of precipitation zoning on Iran using different interpolation methods and in a case-by-case manner. Nevar Journal of meteorological organization. 18: 101. 67-74.
3.Arowolo, A., Bhowmik, O.K.A., Qi, M., and Deng, X. 2017. Comparison of spatial interpolation techniques to generate high-resolution climate surfaces for Nigeria. International Journal of Climatology.37: 1. 179-192.
4.Ataei, H., Tavana, M., and Parsa, L. 2014. Climate Analysis of Mazandaran Province and Mazandaran Province's Climate Zoning Using  Gis. The Second national conference of Tourism, Geography and Stable Environment.18: 3. 95-106. (In Persian)
5.Badpi, A., Kavianpour, M., and Moazami Goodarzi, S. 2017. Investigating the performance of precipitation algorithms in comparison with radar in Golestan and Mazandaran regions. 2nd International Conference on Civil Engineering, Architecture and Crisis Management.(In Persian)
6.Bostan, P., Heuvelink, G., and Akyurek, S. 2012. Comparison of regressionand kriging techniques for mapping
the average annual precipitation of Turkey. International Journal of Applied Earth Observation and Geoinformation. 19: 1. 115-126.
7.De Mello Cunha, A., dos Santos, G.R., de Souza, E., Trindade, S.F., Filho, E.I.F., Lani, J.L., and França, M.M. 2012. Kriging and Cokriging for spatial interpolation of rainfall in Espirito Santo State, Brazil. Proceedings of the 10th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, 10-13th July, Florianópolis, SC, Brazil. pp. 97-102.
8.Dellavari, D., Mirzai zade, M., andTarek, M. 2014. Evaluation of Different Kriging Methods in Ilam ProvinceRain Zone. Second National Conference on Architecture, Civil and Urban Environment, Hamadan, Martyr Mofteh Callege. (In Persian)
9.Gao, F., Zhang, Y., Chen, Q., Wang, P., Yang, H., Yao, Y., and Cai, W. 2018. Comparison of two long-term and
high-resolution satellite precipitation datasets in Xinjiang, China. Atmospheric Research. 212: 15. 150-157.
10.Ghaderpour, E., Ben Abbes, A., Rhif, M., Pagiatakis, S.D., and Farah, I. R. 2020. Non-stationary and unequally spaced NDVI time series analyses by the LSWAVE software. International Journal of Remote Sensing, 41: 6. 2374-2390.
11.Guo, H., Chen, S.H., Bao, A., Behrangi, A., Hong, Y., Ndayisaba, F., Junjun, H.U., and Stepanian, P.M. 2016. Early Assessment of Integrated Multi-Satellite Retrievals for Global Precipitation Measurement over China. Journal of Atmospheric Research. 176: 14. 121-133.
12.Hosseini Moghari, S.M., Iraqinejad, S.H., and Ebrahimi, K. 2016. Evaluation of global rainfall bases and their application in drought monitoring-Case (Karkheh basin). Journal of Agricultural Meteorology. 102: 2. 14-26.
13.Jamei, M., and Mousavi Baigi, M. 2013. Spatial and zoning estimation of reference evapotranspiration in Khuzestan province. Journal of Geography and Regional Development (Research Journal). 11: 21. 23-43.
14.Kumari, M., Basistha, A., Bakimchandra, O., and Singh, K.C. 2016. Comparison of spatial interpolation methods for mapping rainfall in Indian Himalayas of Uttarakhand region. Geostatistical and Geospatial Approaches for the Characterization of Natural Resources in the Environment. Springer, Cham, Switzerland. 104: 56. 156-165.
15.Nabi Pur, Y., and Vafa Khah, M.2017. Comparison of Different Geostatistical Methods for Estimating Rainfall in Haji Ghoshan Watershed. Journal of range and watershed management. 2: 69. 487-502.
16.Nadi, M., Jamei, M., Bazrafshan, J.,and Janat Rostami, S. 2012. Evaluation of Different Methods for Interpolation of Mean Monthly and Annual Precipitation Data (Case Study: Khuzestan Province), Physical Geography Research.4: 44. 130-117. (In Persian)
17.Nadi, M., Khalili, A., Pour Tahmasi, K., and Bazrafshan, J. 2013. Comparisonof different climatological zoning techniques to determine the most important factors affecting the growth of Chahar Bagh area trees, Journal of Forest and Wood Products (iranian journal of natural recources). 1: 66. 95-83. (In Persian)  
18.Poméon, T., Jackisch, D., and Diekkrüger, B. 2017. Evaluating the performance of remotely sensed and reanalysed precipitation data over West Africa using HBV light. Journal of Hydrology. 547: 103. 222-235.
19.Seyf, S., and Sherafati, A. 2021. Analysis of TRMM precipitation data uncertainty in groundwater level modeling of Rafsanjan plain. Journal of Water and Irrigation Managemen. 11:2.207-22. DOI: 10.22059/jwim.2021. 319364.862.
20.Sharifi, A., Saghafian, B., and Hold Stein Ker, R. 2016. Efficiency of the latest product manufacturers of satellite evaluation with high resolution. The first national conference on water resources management, Kurdistan University.
(In Persian)
21.Tan, M.L., and Santo, H. 2018. Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmospheric Research. 202: 64. 63-76.
22.Ten, M.L., Ibrahim, A.L., Duan, Z.H., Cracknell, A.P., and Chaplot, V. 2015. Evaluation of six high-resolutiun satellite and ground-based precipitation products over Malaysia, remote Sens. 58: 7. 1504-1528.
23.Worqlul, A.W., Yen, H., Collick, A.S., Tilahun, S.A., Langan, S., and Steenhuis, T.S. 2017. Evaluation of CFSR, TMPA 3B42 and ground-based rainfall data as input for hydrological models, in data-scarce regions: The upper Blue Nile Basin, Ethiopia. Catena. 152: 78. 242-251.
24.Yang, X., Xiaojin, X., Liu, D., Ji, F., and Wang, L. 2015. Spatial Interpolation of Daily Rainfall Data for Local Climate Impact Assessment over Greater Sydney Region, Advances in Meteorology. 655p.
25Yousefi Kabria, A., Nadi, M., and Sheikhi Arjanki, S.H. 2020. Increase the accuracy of monthly and annual precipitation maps using covariates in Mazandaran province. Iranian Water Researches Journal. 14: 3. 107-114.(In Persian)