تحلیل تغییرات دبی نشت در پایین دست بندهای انحرافی؛ بازنگری راه‌حل پاولوفسکی

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی عمران، دانشکده مهندسی، دانشگاه فردوسی، مشهد، ایران

2 گروه مهندسی عمران، دانشگده مهندسی، دانشگاه فردوسی، مشهد، ایران

چکیده

سابقه و هدف: احداث کف بندها و بندهای انحرافی که بر روی بسترهای آبرفتی ایجاد می‌شوند، نقش مهمی در حفاظت بستر رودخانه ها ایفا می کنند. طراحی این سازه‌ها بر روی پی‌های نفوذپذیر، نیازمند تعیین گرادیان‌ خروجی و نشت بعد از انتهای پایین دست سازه می‌باشد که این مهم با تحلیل جریان نشت انجام می‌گیرد. جریان نشت می-تواند در داخل و یا از زیر سازه‌های هیدرولیکی و همچنین از بستر کانال‌های روباز رخ دهد. یکی از روش‌های موجود جهت بررسی جریان نشت و حل معادله لاپلاس، استفاده از روش‌های تحلیلی می‌باشد که معمولاً بر اساس تئوری نگاشت همدیس استوار است. گرادیان هیدرولیکی در انتهای پایین دست و دبی نشت عبوری از زیر بند انحرافی می‌تواند توسط دیواره آب‌بند کنترل شود. در مقاله حاضر، روابط تحلیلی بصورت فرم بسته برای معادله تغییرات گرادیان هیدرولیکی و دبی نشت نسبت به فاصله از انتهای پایین دست سازه، با آرایش‌های مختلف قرارگیری دیواره آب‌بند، که محیط متخلخل زیرین آن با عمق نامحدود می‌باشد ارائه شده است. مسأله برای چهار حالت مختلف دیواره آب‌بند قائم در انتهای پایین دست، دیواره آب‌بند قائم در انتهای بالادست، دو دیواره آب‌بند قائم با طول های مساوی در بالادست و پایین دست و سازه با کف مدفون حل شده است.
مواد و روش‌ها: در این مقاله، با استفاده از تئوری نگاشت همدیس و یک دیدگاه ساده بر پایه معادله دارسی، در حالت گسترش نامحدود محیط متخلخل زیر سازه، معادلات گرادیان هیدرولیکی و دبی نشت نسبت به فاصله از پایین دست سازه بدست آمده‌اند که در واقع، توسعه راه حل پاولوفسکی به حساب می‌آید. در تئوری نگاشت همدیس از تبدیل شوارتز- کریستوفل استفاده می‌شود.
یافته‌ها: با توجه به معادلات بدست آمده، نمودارهای بی بعد برای تغییرات گرادیان هیدرولیکی و دبی نشت عبوری از زیر سازه، نسبت به فاصله از انتهای پایین دست و همچنین طول سازه تولید شده‌اند. با فرض اینکه b بعد طول سازه، s عمق آب‌بند، x فاصله از انتهای پایین دست و d عمق مدفون شدگی سازه باشند، تغییرات مقدار گرادیان هیدرولیکی در یک مقدار ثابت b/s یا b/d ، با افزایش فاصله از پایین دست سازه کاهش می-یابد و نیز در یک مقدار ثابت x/s یا x/d ، با افزایش b/s یا b/d ، شاهـد افت مقدار گرادیان هیدرولیکی خواهیم بود. با هدف محدود کردن نشت به مقداری مشخص که از طول معینی در انتهای پایین دست سازه خارج می‌شود، مقدار b/s در حالت وجود آب‌بند در بالادست به ترتیب بیشتر از دو آب‌بند، آب‌بند در پایین دست و سازه با کف مدفون می‌باشد.
نتیجه‌گیری: با توجه به نمودارهای بدست آمده و تحلیل آن‌ها، نتایج نشان می‌دهند که تأثیر وجود آب‌بند در پایین دست در کاهش دبی نشت بیشتر از سایر حالت‌ها می‌باشد و مقدار گرادیان هیدرولیکی در حالت سازه با کف مدفون کمتر از سایر حالت‌ها می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Analysis of seepage discharge variations at the downstream end of diversion dams; Pavlovsky’s solution revisited

نویسندگان [English]

  • Seyyed Hossein Mojtahedi 1
  • Mahmoud Faghfour Maghrebi 2
1 PhD candidate of Civil engineering, Engineering Faculty, Ferdowsi university of Mashhad, Iran
2 Civil engineering department, Engineering faculty, Ferdowsi university, Mashhad, Iran
چکیده [English]

Background and Objectives: The construction of aprons and diversion dams on alluvial beds have important role in rivers protection. Design of such hydraulic structures on permeable foundations is required to determine hydraulic gradients and seepage discharge after the downstream end of the structure. This important issue is well done by seepage flow analysis. The seepage flow may occur in or beneath hydraulic structures and also from the bed of open channels. One of the existing methods for analyzing seepage flow and solving Laplace’s equation is the application of analytical solution which is usually based on the theory of conformal mapping. The hydraulic gradients at the end of downstream and seepage discharge passing beneath diversion dams could be controlled by cutoff walls. In the present paper, analytical closed-form equations for the variations of hydraulic gradients and seepage discharge are presented as a function of the distance from downstream end for various arrangements of cutoff walls. The porous media beneath the structure is assumed to have infinite depth. The problem is solved for four scenarios: cutoff wall at downstream end, cutoff wall at upstream end, double cutoff walls at both ends and the structure with depressed floor.
Materials and methods: In this paper, hydraulic gradients and seepage discharge have been obtained with respect to the distance from downstream end by the use of conformal mapping and an approach based on Darcy’s equation. Indeed, this method is the extension of Pavlovsky’s solution. The Schwarz-Christoffel transformation is used in conformal mapping.
Results: Based on the resulting equations, non-dimensional charts have been produced for the variations of hydraulic gradients and seepage discharge with respect to the distance from downstream end and the length of structure. Assuming b is the length of structure, s is the depth of cutoff wall, x is the distance from downstream end, and d is the depth of depressing floor, at constant ratios of b/s or b/d , the hydraulic gradients values are decreased with increasing the distance from the end and also at constant ratios of x/s or x/d , the hydraulic gradients values are decreased with increasing the b/s or b/d ratios. For limiting the seepage discharge in a determined value which is passed from the downstream end of the structure, the value of b/s in the case of cutoff at upstream end is greater than double cutoffs, cutoff at downstream end and, depressed floor, respectively.
Conclusion: Based on the obtaining charts, the results show that the cutoff wall at the downstream end is more effective than the others and the hydraulic gradients in the case of depressed floor is less than the other cases

کلیدواژه‌ها [English]

  • Conformal mapping
  • Darcy’s equation
  • Seepage
  • Hydraulic gradients
  • Pavlovsky’s method
1.Ahmadian, S., and Maghrebi, M.F. 2017. Optimizing location and angle of cutoff walls in diversion dams using conformal mapping. Journal of Hydraulic. 12: 4. 1-13. (In Persian)
2.Anderson, E.I. 2015. Exact and Approximate Solutions for Seepage through Semipermeable Cutoff Walls. International Journal of Geo-mechanics, 15:6. 04014087-1–04014087-10.
3.Banerjee, S., and Muleshkov, A. 1992. Analytical solution of steady seepage into double-walled cofferdams. Journal of Engineering Mechanics. 118: 3. 525-539.
4.Byrd, P.F., and Friedman, M.D. 1971. Handbook of elliptic integrals for engineers and scientists, Springer, New York, Pp: 25-27.
5.Farouk, M.I., and Smith, I.M. 2000. Design of Hydraulic Structures with Two Intermediate Filters. Journal of Applied Mathematical Modeling. 24: 11. 779-794.
6.Goel, A., and Pillai, N.N., 2010. Variation of Exit Gradient Downstream of Weirs on Permeable Foundations. Pacific Journal Science and Technology. 11: 1. 28-36.
7.Harr, M.E. 1962. Groundwater and Seepage, McGraw Hill, New York,pp. 101-135.
8.Ijam, A.Z. 1994. Conformal Analysis of Seepage below a Hydraulic Structure with Inclined Cutoff. International Journal for Numerical and Analytical methods in Geo-mechanics, 18: 5. 345-353.
9.Jain, A.K., and Reddi, L.N. 2011. Finite- Depth Seepage below Flat Aprons with Equal End Cutoffs. Journal of Hydraulic Engineering, ASCE. 137: 12. 1659-1667.
10.Kacimov, A.R., and Obnosov, Y.V. 2012. Analytical solutions for seepage near material boundaries in dam
cores: The Davison-Kalinin problems revisited. Applied Mathematical Modeling. 36: 3. 1286-1301.
11.Kacimov, A.R., Al-Maktoumi, A., and Obnosov, Y.V. 2019. Seepage through earth dam with clay core and toe drain: the Casagrande–Numerov analytical legacy revisited. ISH Journal of Hydraulic Engineering. 25: 3. 1-9.
12.Khosla, A.N., Bose, N.R., and Taylor, E.M. 1936. Design of Weirs on Permeable Foundations. Publication No. 12, Central Board of Irrigation, New Delhi, India.
13.Lou, G.Y., Qui, J.S., Cao, H., and Pan, H. 2018. Simplified method for calculating inflow into a deep excavation with consideration of the effects of cutoff walls. Hydrogeology Journal. 26: 1. 2853-2865.
14.Malhotra, J.K. 1936. Appendix to Chapter VII: Mathematical Investigations of the Subsoil Flow under Two Standard Forms of Structures. Publication No. 12, Central Board of Irrigation, New Delhi, India, pp. 85-90.
15.Mansuri, B., Salmasi, F., and Oghati, B. 2014. Effect of Location and Angle of Cutoff Wall on Uplift Pressure in Diversion Dam. Journal of Geotechnical and Geological Engineering. 32: 1. 1165-1173.
16.Mojtahedi, S.H., and Maghrebi, M.F. 2010. Analytical method in seepage computation from a canal with a semi- elliptic section using conformal mapping. Iranian Journal of Irrigation and Drainage. 1: 4. 22-30. (In Persian)
17.Polubarinova-Kochina, P.Y. 1962. Theory of Groundwater Movement. Translation by J.M. Roger de Wiest Princeton University, Princeton, NJ,pp. 66-106.
18.Sheikh Rezazadeh Nikoo, N., Khalili Shayan, H., and Amiri Tokaldani, E. 2012. Experimental and numerical investigation of the optimal dimensions and location of cutoff walls, blankets and drainage on the reduction of uplift forces, seepage discharge and hydraulic gradients in diversion dam foundations. 11th Hydraulic Conference, Urmia, Iran, pp. 1-8. (In Persian)
19.Salmasi, F., Nourani, B., and Abraham, J. 2020. Investigation of the effect of the different configurations of double-cutoff walls beneath hydraulic structures on uplift forces and exit hydraulic gradients. Journal of Hydrology.586: 1. 48-58.
20.Salmasi, F., Nouri, M., and Abraham, J. 2020. Upstream cutoff and downstream filters to control of seepage in dams. Water Resources Management. 34: 1. 4271-4288.
21.Sartipi, N., Salmasi, F., Abraham, J., and Hosseinzadeh Dalir, A. 2020. Investigation of the effect of depth and distance between cutoff walls on uplift force for gravity dams. International Journal of Environmental Science and Technology. 18: 1. 1361-1378.
22.Yakimov, N.D., and Kacimov, A.R. 2017. Darcian Flow under/through a Leaky Cutoff Wall: Terzaghi–Anderson's Seepage Problem Revisited. International Journal of Numerical and Analytical Methods in Geo-mechanics. 41: 1. 1182-1195.