استفاده از نقشه ویژگی‌های خاک در تولید نقشه‌های تفصیلی دقیق خاک

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 استادیار بخش تحقیقات علوم زراعی- باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان کردستان

2 استاد گروه علوم و مهندسی خاک، دانشگاه تهران، ایران

3 دانش‌آموخته کارشناسی‌ارشد علوم و مهندسی خاک، دانشگاه تهران، ایران

چکیده

سابقه و هدف: نقشه‌های تفصیلی خاک یکی از ابزارهای ضروری برای دستیابی به مدیریت پایدار می‌باشند. باوجود پیشرفت‌های صورت گرفته در نقشه‌برداری رقومی خاک و تلاش‌ در تولید نقشه‌های دقیق، عدم اطمینان کافی به نقشه‌های خاک در بسیاری از مقیاس‌ها همچنان به قوت خود باقی است. مطالعات اخیر عمدتا بر روش‌های سنجش از دور تمرکز یافته است که ویژگی‌های مشخصه زیر سطحی خاک را کمتر در نظر می‌گیرند. این مطالعه از روش جدید درون یابی بین خصوصیات زیرسطحی و مشخصه خاک برای افزایش دقت نقشه های تهیه شده استفاده نموده است. هدف از این مطالعه تولید نقشه‌های دقیق خاک با دو رویکرد استفاده از سطوح ژئومورفیک و همچنین درون‌یابی ویژگی‌های مشخصه زیرسطحی خاک در منطقه چالوس می‌باشد.
مواد و روش‌ها: منطقه مورد مطالعه به مساحت 100 هکتار در روستای باندر از توابع بخش کلاردشت شهرستان چالوس در استان مازندران می‌باشد. از ضخامت و یا عمق مرز بالایی/پایینی افق‌های مشخصه یا خصوصیات مشخصه خاک به عنوان معیار تفکیک واحدهای نقشه خاک استفاده گردید. بر اساس سیستم جامع رده‌بندی امریکایی خاک، شش ویژگی مشخصه تاثیرگذار در تفکیک خاک‌های منطقه در سطح فامیل (مرز فوقانی افق کمبیک، مرز فوقانی افق آرجیلیک، مرز فوقانی افق کلسیک، ضخامت افق مالیک، ضخامت خاکرخ و آهکی یا غیر آهکی بودن) انتخاب گردید و از درون‌یابی عددی این ویژگی‌ها برای تولید نقشه‌های موضوعی استفاده شد. نقشه نهایی خاک منطقه از تلفیق این شش نقشه موضوعی به‌دست آمد. پس از تهیه نقشه هر یک از خصوصیات خاک به صورت مجزا، کلیه نقشه-های تهیه شده با یکدیگر تلاقی داده شده و نقشه واحدهای همگن به دست آمد. اراضی مرتفع منطقه مزبور به دلیل اکوسیستم منحصر به فرد و تاثیر جهت شیب در ایجاد خرد‌اقلیم‌ها، تغییرات پوشش گیاهی و تنوع بالای خاک‌ها از اهمیت خاصی برخوردار است. نمونه‌برداری از 56 خاکرخ و 44 مته (به منظور بررسی تغییرات در فاصله میان خاکرخ‌ها) به‌صورت شبکه‌ای نسبتا منظم با فواصل 100 متر انجام شد. به‌منظور بررسی و توصیف ساختار مکانی متغیرهای مورد نظر از نیم‌تغییرنما استفاده شد. وجود روند و ناهمسانگردی داده‌ها نیز مورد بررسی قرار گرفت. پس از تهیه منحنی‌های تغییرنما ، انتخاب بهترین مدل‌ها با استفاده از روش اعتبارسنجی متقاطع و نیز شاخص RMSS انجام گرفت.
یافته‌ها: در تهیه نقشه خاک با استفاده از روش سطوح ژئومورفیک، از 20 واحد خاک شناسایی شده 12 واحد خاک از نوع همسان و 8 واحد از نوع اجتماع بود. این در حالی است که تمامی 20 واحد نقشه به دست آمده از روش درون‌یابی ویژگی‌های زیر سطحی از نوع همسان بودند. این روش دقت بالایی در ترسیم مرز بین واحدهای خاک داشت. تفاوت اصلی این روش با روش‌های سنتی در تولید نقشه-های تفصیلی خاک، استفاده از درون‌یابی خودکار نظارت شده به‌جای درون‌یابی دستی و استفاده از مجموعه‌ای از شاخص‌های کمی می-باشد.
نتیجه گیری: یکی از مزایای عمده این روش استفاده از ویژگی‌های درونی خاک به عنوان متغیر کمکی در کنار سایر فاکتورهای اقلیم، توپوگرافی، موجودات زنده، مواد مادری و زمان است. این مطالعه بر اهمیت نقش فاکتور s در مدل SCORPAN تاکید کرده و نشان داد که ویژگی‌های درونی خاک که به‌طور مستقیم در رده‌بندی خاک دخالت دارد، به‌طور مؤثری می‌توانند در تفکیک واحدهای خاک استفاده گردند.

کلیدواژه‌ها


عنوان مقاله [English]

Using soil properties map in the production of detailed soil maps

نویسندگان [English]

  • Maryam Osat 1
  • Ahmad Heydary 2
  • Arash Salami 3
1 Assistant Prof. of Horticulture Crop Research Department, Kordestan Agricultural and Natural Resources Research and Education Center, AREEO, Sanandaj, Iran
2 Professor, Dept. of Soil Science and Engineering, University of Tehran, Iran,
3 M.Sc. Graduate, Dept. of Science and Engineering, University of Tehran, Iran
چکیده [English]

Background and objectives: Detailed soil maps are an essential tool for achieving sustainable management. Despite the advances in digital soil mapping and efforts to produce accurate maps, insufficient reliability on the soil maps remains on different scales. Recent studies have been focused primarily on remote sensing, which pays less attention to the subsurface diagnostic properties of the soil. This study used a new interpolation method between the subsurface soil diagnostic properties to increase the accuracy of the prepared maps. In this study, the production of soil maps with two approaches including the use of geomorphic surfaces, as well as the interpolation of subsurface characteristics of the soil in the Chalous region, was examined.
Materials and methods: The study area with an extent of 100 hectares in Bandar village, was located in the suburb of Kelardasht, in Chalous County, Mazandaran province. The thickness, or depth of the upper/lower boundary of the diagnostic horizons, or soil characteristic properties used as criteria for distinguishing soil map units. According to the Comprehensive American Soil Classification System, there are six influential characteristics (Upper Cambic horizon boundary, argillic horizon upper boundary, calcic horizon upper boundary, Mollic horizon thickness, soil profile thickness, and calcareous or non-calcareous parent materials) in soils at the family level, that were used for numerical interpolation and generate thematic maps. The final soil map of the region was obtained by a combination of these six thematic maps. After mapping each of the soil properties separately, all the prepared maps intersected, and homogeneous map units were obtained. The highlands of this region, are of special importance due to their unique ecosystem and the effect of slope direction on microclimate formation, vegetation changes, and high soil diversity. Grid sampling was carried out from 56 profiles and 44 auger points (to assess variability among profiles) as a grid network with 100 m intervals. To study and describe the spatial structure of the variables, a semivariogram was used. The existence of data trends and heterogeneity were also examined. After preparing the variograms, the selection of the best approach was done using the cross-validation method and RMSS index.
Results: To prepare the soil map using the geomorphic surface method, out of 20 soil units were identified, 12 soil units were of the consociation type, and 8 unit were of the association type. However, all 20 map units obtained by interpolation of subsurface diagnostic properties were of consociation type. This method had high accuracy in mapping the boundaries among soil units. The main differences between this method and traditional methods are in the production of detailed soil maps, the use of supervised automatic interpolation instead of manual interpolation, and the use of a set of quantitative indicators.
Conclusion: One of the major advantages of this method is the use of internal characteristics of the soil as an auxiliary variable along with other climatic factors, topography, living organisms, parent material and time. This study underscored the importance of the role of factors in the SCORPAN model and showed that the internal properties of the soil, which are directly involved in soil classification, can be effectively used to separate soil map units

کلیدواژه‌ها [English]

  • Geomorphology
  • Soil Map
  • Geostatistics
1.Angelini, M.E., Heuvelink, G.B.M., Kempen, B., and Morrás, H.J.M. 2016. Mapping the soils of an Argentine Pampas region using structural equation modelling. Geoderma. 281: 102-118.
2.Basayigit, L., and Senol, S. 2008. Comparison of soil maps with different scales and details belonging to the same area. Soil and water res. 1: 31-39.
3.Brady, N.C., and Weil, R.R. 1999. Chapter 1. The nature and properties of soils. 13th edition. Pp: 1-59.
4.Bui, E.N., Loughhead, A., and Corner, R. 1999. Extracting soil –landscape rules from previous soil surveys. Australian Journal of Soil Research. 37: 495-508.
5.Bui, E.N., and Moran, C.J. 2001. Disaggregation of polygons of surficial geology and soil maps using spatial modeling and legacy data. Geoderma. 103: 79-94.
6.Burt, R. 2004. Soil survey laboratory methods manual. NRCS, USDA, Soil survey investigation report. No: 42, Version 4.0, 736p.
7.Cambardella, C.A., Moorman, T.B., Novak, J.M., Parkin, T.B., Karlen, D.L., Turco, R.F., and Konopka, A.E. 1994. Field-scale variability of soils properties in central Iowa soils. Soil Science Society of America Journal. 58: 1501-1511.
8.Camera, C., Zomeni, Z., Noller, J.S., Zissimos, A.M., Christoforou, I.C., and Bruggeman, A. 2017. A high resolution map of soil types and physical properties for Cyprus: A digital soil mapping optimization. Geoderma. 286: 35-49.
9.Dobos, E., Micheli, E., Baumgardner, M.F., Biehl, L., and Helt, T. 2000. Use of combined digital elevation model and satellite radiometric data for regional soil mapping. Geoderma. 97: 367-391.
10.Dornik, A., Dragut, L., and Urdea, P. 2018. Classification of soil types using geographic-based image analysis and random forests. Pedosphere. 28: 913-925.
11.Du, C., Linker, R., and Shaviv, A. 2008. Identification of agricultural soils using mid-infrared photoacoustic spectroscopy. Geoderma. 143: 85-90.
12.Elnaggar, A.A. 2007. Development of predictive mapping techniques for soil survey and salinity mapping. (Doctoral dissertation, Oregon state University, Corvallis, Oregan), 185p.
13.Gabler, R.E., Petersen, J.F., and Trapasso, L.M. 2006. Soils and soil development. Essentials of physical geography, 8th Edition. Pp: 330-360. 
14.Gee, G.W., and Bauder, J.W. 1986. Particle-size analysis, in: Klute A. (Eds.), Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods,2nd ed. Agronomy. 9: 383-411.
15.Grunwald, S. 2009. Multi-criteria characterization of recent digital soil mapping and modelling approaches. Geoderma. 152: 3-4. 195-207.
16.Häring, T., Dietz, E., Osenstetter, S., Koschitzki, T., and Schröder, B. 2012. Spatial disaggregation of complex soil map units: Adecision-tree based approach in Bavarian forest soils. Geoderma. 185-186: 37-47.
17.Hengl, T., Toomanian, N., Reuter, H., and Malakouti, M.J. 2007. Methods to interpolate soil categorical variables from profile observations: Lessons from Iran. Geoderma. 140: 417-427.
18.Heuvelink, G.B.M., and Webster, R. 2001. Modelling soil variation:past, present and future. Geoderma.100: 269-301.
19.Horácek, M., Samec, P., and Minár, J. 2018. The mapping of soil taxonomic units via fuzzy clustering- A case study from the outer Carpathians, Czechia. Geoderma. 326: 111-122.
20.Juan, P., Mateu, J., Jordan, M.M., Mataix-Solera, J., Meléndez-Pastor,I., and Navarro-Pedreno J. 2011. Geostatistical methods to identify and map spatial variations of soil salinity. Journal of Geochemical Exploration, 108: 62-72.
21.Khitrov, N.B. 2012. The development of detailed soil maps on the basis of interpolation of data on soil properties. Eurasian Soil Science. 45: 918-928.
22.Kunze, G.W., and Dixon, J.B. 1986. Methods of soil analysis, Part 1. Physical and Mineralogical Methods. Am. Soc. of Agron. Pp: 91-100.
23.Lee, K.S., Lee, G.B., and Tyler,E.J. 1988. Determination of soil characteristics from thematic mapper data of a cropped organic-inorganic soil landscape. Soil Science Society of American Journal. 52: 1100-1104.
24.Liu, X.M., Xu, J.M., Zhang, M.K., Huang, J.H., Shi, J.C., and Yu, X.F. 2004. Application of geostatistics and GIS technique to characterize spatial variabilities of bioavailable micronutrients in paddy soils. Environmental Geology, 46: 189-194.
25.McBratney, A.B., Mendonça Santos, M.L., and Minasny, B. 2003. On digital soil mapping. Geoderma. 117: 3-52.
26.Minasny, B., and McBratney, A.B. 2007. Incorporating taxonomic distance into spatial prediction and digital mapping of soil classes. Geoderma.142: 285-293.
27.Mirakzehi, Kh., Shahriari, A., Pahlavan Rad, M.R., and Bameri, A. 2017. Application of random forest method for predicting soil lasses in low relief lands (Case study: Hirmand County). J. of Water and Soil Conservation, 24: 1. 67-84.
28.Moran, C.J., and Bui, E. 2002. Spatial data mining for enhanced soil map modeling. International Journal of Geographical Information Science.16: 533-549.
29.Odgers, N.P., McBratney, A.B., and Minasny, B. 2011. Bottom-up digital soil mapping. I. Soil layer classes. Geoderma. 163: 38-44.
30.Reza, S.K., Nayak, D.C., Chattopadhyay, T., Mukhopadhyay, S., Singh, S.K.,and Srinivasan, R. 2016. Spatial distribution of soil physical properties of alluvial soils: a geostatistical approach. Archives of Agronomy and Soil Science. 62: 972-981.
31.Schoeneberger, P.J., and Wysocki,D.A. 2017. Geomorphic Description System, Version 5.0. Natural Resources Conservation Service, National Soil Survey Center, Lincoin, NE, 208p.
32.Shahriari, A., Khormali, F., Karimi, A.R., Lehndorff, E., and Tazikeh, H. 2015. Palaeopedological study of loess-palaeosol sequences along a climosequence in northern Iran. J. of Water and Soil Conservation, 22: 2. 21-39.
33.Shrestha, D.P., Moonjun, R., and Farshad, A. 2016. Adequacy of soil information resulting from geopedology- based predictive soil mapping for assessing land degradation: Case studies in Thailand, In: Zink, J.A., Metternicht, G., Bocco, G., and Del Valle, E.F. Geopedology: An Integration of Geomorphology and Pedology for Soil and Landscape Studies, Pp: 457-471.
34.Siqueira, D.S., Marques, JrJ., Pereira, G.T., Teixeira, D.B., Vasconcelos, V., Carvalho Junior, O.A., and Martins, E.S. 2015. Detailed mapping unit design based on soil-landscape relationand spatial variability of magnetic susceptibility and soil color. Catena. 135: 149-162.
35.Skidmore, A.K., Watford, F., Luckananurug, P., and Ryan, P.J. 1996. An operational GIS expert system for mapping forest soils. Photogrammetric Engineering and Remote Sensing,62: 501-511.
36.Soil Survey Staff. 2014. Keys toSoil Taxonomy, 11th ed. U.S. Department of Agriculture, Natural Recourses Conservation Service.
37.Sommer, M., Wehrhan, M., Zipprich, M., Castell, Z.W., Weller, U., Castell, W., Ehrich, S., Tandler, B., and Selige, T. 2003. Hierarchical data fusion for mapping soil units at field scale. Geoderma. 112: 179-196.
38.Sparks, D.L., Page, A.L., Helmke, P.A., Leoppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, G.T., and Summer, M.E. 1996. Method of soil analysis. Siol Science Society of American Journal, Madison, Wisconsin.
39.Thomas, A.L., King, D., Dambrine, E., Couturier, A., and Roque, A. 1999. Predicting soil classes with parameters derived from relief geologic materialsin a sandstone region of the Vosges Mountains (Northeastern France). Geoderma. 90: 291-305.
40.Vaysse. K., and Lagacherie. P. 2017. Using quantile regression forest to estimate uncertainty of digital soil mapping products. Geoderma. 291: 55-64.
41.Vincent, S., Lamercier, B., Berthier,L., and Walter, C. 2018. Spatial disaggregation of complex soil map units at the regional scale based onsoil-landscape relationships. Geoderma, Pp: 130-142.
42.Zeraatpisheh, M., Ayoubi, Sh., Jafari, A., and Finke, P. 2017. Comparing the efficiency of digital and conventional soil mapping to predict soil typesin a semi-arid region in Iran. Geomorphology. 285: 186-204.
43.Zinck, J.A., Metternicht, G., Bocco Verdinelli, G.H.R., and Del Valle, H.F. 2016. Geopedology, An Integration of Geomorphology and Pedology for Soil and Landscape Studies. Springer Cham Heidelberg New York Dordrecht London. 550p.