شبیه‌سازی الگوی توزیع مجدد رطوبتی در اراضی شیبدار تحت سامانه آبیاری قطره‌ای

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد گروه علوم و مهندسی آب، دانشگاه کردستان

2 دانشیار گروه علوم و مهندسی آب، دانشگاه کردستان

3 استادیار گروه علوم و مهندسی آب، دانشگاه کردستان

چکیده

چکیده
سابقه و هدف: یکی از شاخص‌های مهم در طراحی سامانه‌های آبیاری قطره‌ای، تخمین دقیق ابعاد پیاز رطوبتی می‌باشد که از تلفات عمقی آب و هزینه‌های اضافی طراحی سامانه آبیاری جلوگیری می نماید. ابعاد پیاز رطوبتی تحت تاثیر الگوی توزیع رطوبت در دو مرحله زمان آبیاری و پس از آبیاری است. مطالعات فراوانی در خصوص الگوی توزیع رطوبت در اراضی شیب‌دار انجام شده، اما مطالعات اندکی در خصوص الگوی توزیع مجدد رطوبت در این اراضی انجام شده و یا گزارش نشده‌است. بنابراین هدف اصلی تحقیق حاضر، بررسی و شبیه‌سازی الگوی توزیع مجدد رطوبت در اراضی شیب‌دار می‌باشد. همچنین در مطالعات مشابه، بیشتر به شبیه‌سازی ابعاد پیاز رطوبتی در سطح خاک پرداخته‌شده، اما در این تحقیق علاوه بر ابعاد و مساحت خیس‌شده، شکل کامل پیاز رطوبتی شبیه‌سازی شده‌است.
مواد و روش‌ها: آزمایش‌ها در دو مدل فیزیکی به شکل مکعب مستطیل با ابعاد7/0*2/1*4/1متر و 6/0*2/1*2/1 متر، به‌ترتیب عرض، ارتفاع و طول انجام شد. آزمایش‌ها در سه بافت خاک سبک، متوسط و سنگین، با سه دبی قطره‌چکان، 2، 4 و 6 لیتر در ساعت و در چهار شیب، 0، 10، 20 و 30 درصد انجام شد. مدت زمان آبیاری 3 ساعت و جبهه‌ی پیشروی رطوبت در فاز توزیع مجدد در زمان های3 ،6، 24 و 48 ساعت بر روی صفحه پلی کربنات ترسیم گردید. سپس با استفاده از روش رگرسیون غیرخطی، معادلاتی به منظور پیش‌بینی الگوی توزیع مجدد رطوبت در اراضی شیب‌دار ارائه گردید. در مدل‌های پیشنهاد شده از شاخص‌های دبی قطره‌چکان، حجم آب کاربردی، مدت زمان آبیاری، هدایت هیدرولیکی اشباع خاک، جرم ویژه ظاهری خاک، شیب زمین، رطوبت اولیه و درصد شن، سیلت و رس استفاده گردید. همچنین با استفاده از یک مدل پیشنهادی ارتقا یافته، شکل کامل پیازرطوبتی برآورد گردید.
یافته‌ها: در خاک سنگین مدل‌های پیشنهادی با متوسط مقدار RMSE، 34/0 و MAE ، 28/0 برای شاخص‌ شعاع خیس‌شده و مقادیر 0018/0 و 0014/0 برای شاخص‌ مساحت خیس‌شده، از بالاترین دقت برخوردار بودند. خاک سبک با مقادیر 44/0 و 37/0 شاخص‌های مذکور برای شعاع خیس‌شده و 0029/0 و 0022/0 برای شاخص‌ مساحت خیس‌شده کمترین دقت را داشت. مقادیر شاخص‌های آماری محاسبه شده برای عمق خیس‌شده‌ جبهه‌ توزیع مجدد رطوبتی برای تمامی تیمارهای مورد بررسی مشابه بود و متوسط مقادیر RMSE خاک‌ها در محدوده 43/0 تا 5/0 و MAE آنها در محدوده 31/0 تا 39/0 قرار داشت. همچنین در تمامی تیمارهای مورد بررسی، مقادیر CRM مدلها غالباً مثبت و NS آنها در حدود 99/. بود.
نتیجه‌گیری: نتایج این تحقیق نشان داد که مدل‌های پیشنهادی در خاک‌های سنگین از دقت بالاتری نسبت به خاک‌های سبک برخوردار هستند. همچنین توانایی آنها در برآورد شعاع خیس‌شده و مساحت متناظر آن در بالادست و پایین دست قطره‌چکان و همچنین عمق خیس-شده قطره چکان و شکل کامل پیاز رطوبتی مطلوب و قابل قبول می‌باشد. مقادیر پیش‌بینی مدل‌ها بیشتر در حالت کم برآوردی بود. بنابراین استفاده از مدل‌های مذکور برای تعیین محل قطره‌چکان در اراضی شیب‌دار، به منظور کاهش تلفات عمقی و استفاده بهینه گیاه از آب توصیه می‌گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Simulation of moisture redistribution pattern on sloping lands under drip irrigation system

نویسندگان [English]

  • Shelir Solat 1
  • Eisa Maroufpoor 2
  • Bakhtiar Karimi 3
1 M.Sc. Graduate, Dept. of Water Science and Engineering, University of Kurdistan
2 Associate Prof., Dept. of Water Science and Engineering, University of Kurdistan
3 Assistant Prof., Dept. of Water Science and Engineering, University of Kurdistan
چکیده [English]

Abstract

Background and Objectives: The accurate estimation of the dimensions of the wetting pattern is one of the important parameters in the design of drip irrigation systems, which reduce deep water losses and additional costs of irrigation system design. The wetting dimensions of moisture bulb are affected by the pattern of moisture distribution in the two phases (distribution and redistribution). Various studies have been conducted on the pattern of moisture distribution in sloping lands, but few studies have been carried out or not reported on the pattern of moisture redistribution in these lands. Therefore, the main purpose of this study is to investigate and simulate the pattern of moisture redistribution in sloping lands. Also, in similar studies, the dimensions of the wetting pattern have been usually simulated on the soil surface, but in this research, in addition to the dimensions and wetting area, the full shape of the moisture bulb has been simulated.
Materials and Methods: In this research, two physical rectangular cubic models with dimensions of 1.2 * 1.2 * 0.6 m and 1.4 * 1.2 * 0.7 m were constructed to monitor the soil moisture advance front. These experiments were carried out for four different slopes (0, 10, 20 and 30%), three soil types with different textures (coarse, medium, fine) and three emitter discharges (2, 4, and 6 lit/hour). This study was aimed to simulate the wetting area in a drip irrigation system on slope land. The duration of irrigation was 4 hours and the redistribution wetting front was recorded for different times (e.g., 3, 6, 18, 42, and 66 h) on the Polycarbonate plate. Then, using the nonlinear regression analysis several equations were proposed to predict the redistribution pattern in slopping lands. In the proposed models, emitter flow rate, the volume of applied water, irrigation time, saturated hydraulic conductivity, the soil bulk density, the land slope, the percentage of sand, silt, and clay were utilized. Also, using an enhanced proposed model, the full shape of wetting bulb was estimated.
Results: The suggested models had the high accuracy in heavy soils with the average values of RMSE and MAE for the wetted radius equal to 0.34 and 0.28 cm, respectively. RMSE and MAE values for the wetted area were 0.0018 and 0.0014 m2, respectively. The suggested models had the low accuracy in light soils and RMSE and MAE statistical indices for wetting radius were 0.44 and 0.37 cm and for wetting area were 0.0029 and 0.0022, respectively. The values of calculated statistical indices for the wetted depth of the moisture redistribution front were similar for all the studied treatments and the values of RMSE and MAE varied between 0.43-0.5 and 0.31- 0.39 cm, respectively. Also, the CRM values of the models are mostly positive and their NS is about 0.99 for all the studied treatments.

Conclusion: The results of this research showed that the suggested models have higher precision in heavy soils than light soils. Also, the suggested models have acceptable ability to estimate the wetting radius, upstream and downstream area of the emitter, the wetting depth as well as the full shape of the moisture bulb. The prediction values of the models were mostly underestimated. Therefore, the use of these models recommended for determining the exact location of the emitters in sloping lands, to reduce deep percolation losses and optimal use of water via the plant.

کلیدواژه‌ها [English]

  • Moisture Distribution Pattern
  • Nonlinear Regression
  • Wetting Bulb
  • Wetting Area
1.Alinazari, F., and Karimi, B. 2020. Simulation of wetted area in slope lands in drip irrigation system. Iranian Journal of Irrigation and Drainage,14: 5. 1772-1788.
2.Al-Ogaidi, A.A.M., Wayayok, A., Rowshon, M.K., and Abdullah, A.F. 2016. Wetting patterns estimation under drip irrigation systems using an enhanced empirical model. Agricultural Water Management, 176: 203-213.
3.Amin, M.S.M., and Ekhmaj, A.I.M.2006. DIPAC- drip irrigation water distribution pattern calculator. In: 7th Int. Micro Irrigation Congress PWTC, Kuala Lumpur, Malaysia, Pp: 503-513.
4.Elmaloglou, S., and Diamantopoulos, E. 2009. Effects of hysteresis on redistribution of soil moisture and deep percolation at continuous and pulsedrip irrigation. Agric. Water Manag.96: 533-538.
5.Esmaeeli, E., Soltani-Mohammadi,A., and Broomand-Nasab, S. 2016. Investigation of wetting pattern dimensions in T-Tape drip irrigationon sloping Lands. Journal of Irrigation Science and Engineering (JISE).39: 1. 181-190. (In Persian)
6.Fan, Y., Yang, Z., and Wei, H. 2021. Establishment and verification of the prediction model of soil wetting pattern size in vertical moistube irrigation.Water Supply, 21: 1. 331-343.
7.Hammami, M., and Zayani, K. 2016. An analytical approach to predict the moistened bulb volume beneath a surface point source. Agric. Water Manag.166: 123-129.
8.Heidari, Z., Farasati, M., and Ggobadian, R. 2016. Effect of slope on soil wetting pattern under surface drip irrigation and simulation HYDRUS-2D model. Journal of Water and Irrigation Management.5: 2. 277-288. (In Persian)
9.Kanda, E.K., Senzanje, A., and Mabhaudhi, T. 2020. Soil water dynamics under Moistube irrigation. Physics and Chemistry of the Earth, Parts A/B/C,115, p.102836.
10.Kandelous, M.M., and Šimůnek, J. 2010. Comparison of numerical, analytical, and empirical models to estimate wetting patterns for surface and subsurface drip irrigation. Irrigation Science, 28: 5. 435-444.
11.Karimi, B., Mirzaei, F., and Sohrabi, T. 2015. Developing Equations to Estimate Wetted Area Pattern for Surface and Subsurface Drip Irrigation Systems by Dimensional Analysis. Iranian Journal of Soil and Water Science.
25: 3. 241-252. (In Persian)
12.Karimi, B., Sohrabi, T., Mirzaei, F.and Ababaei, B. 2015. Developing Equations to Estimate the Advance Velocity of the Wetting Front in Surface and Subsurface Drip Irrigation Systems by Dimensional Analysis. Journal of Water and Soil science, 25: 1. 101-112. (In Persian)
13.Karimi, B., and Alinazari, F. 2020. Assessing Different Wetting Front Patterns for Surface Drip Irrigation Systems in Sloping Lands. Journalof Water Research in Agriculture,34: 1. 107-119. (In Persian)
14.Karimi, B., Mohammadi, P., Sanikhani, H., Salih, S.Q., and Yaseen, Z.M. 2020. Modeling wetted areas of moisture bulb for drip irrigation systems: An enhanced empirical model and artificial neural network. Computers and Electronics in Agriculture, 178, p.105767.
15.Karimi, B., Mirzaei, F., and Sohrabi, T. 2013. Evaluation of Moisture Front Redistribution in Surface and Subsurface Drip Irrigation Systems. Journal of Water and Soil science,23: 3. 183-192. (In Persian)
16.Karimi, B., Sohrabi, T., Mirzaei, F.,and Ababaei, B., 2015. Developing equations to predict the Pattern of soils moisture redistribution in surface and subsurface drip irrigation systems using dimension analysis. Journal of Water and Soil Conservation, 21: 6. 223-237. (In Persian)
17.Kilic, M. 2020. A new analytical method for estimating the 3D volumetricwetting pattern under drip irrigation system. Agricultural Water Management, 228, p.105898.
18.Malek, K., and Peters, R.T. 2011. Wetting pattern models for drip irrigation: new empirical model.J. Irrig. Drain. Eng. 137: 530-536.
19.Mohammadbeigi, A., Mirzaei, F., and Ahraf, N. 2017. Simulation of soil moisture distribution under drip irrigation pulsed and continuous in dimensional analysis method. Iranian Journal of Water and Soil Conservation. 23: 6. 163-180. (In Persian)
20.Mohammadbeigi, A., Mirzaei, F.,and Ahraf, N. 2016. Evaluation and comparing of redistribution of moisture in drip irrigation by pulsed flow and continuous flow. Iranian Journal of Soil and Water Research. 47: 3. 467-473.(In Persian)
21.Mohammadi, A., Biglouei, M.H., Khaledian, M.R., Moridnejad, A.R., and Rajabi, J. 2014. Investigation of wetting pattern dimensions on sloping lands. Journal of Science and Technology of Agriculture and Natural Resources,17: 66. 109-121. (In Persian)
22.Mostafazadeh, B., Mousavi, S.F., and Hossain Sharif-Bayanolhagh, M. 1998. Wetting front advance from a point source in sloping fields. JWSS-Isfahan University of Technology, 2: 3. 13-23. (In Persian)
23.Norouzian, Z., Sadraddini, A.A., Nazemi, A.H., and Delirhasannia, R. 2017. Experimental and numerical investigations of soil water distribution under subsurface drip Irrigation in level and sloping layered soils. Journal of Water and Soil Science. 26: 4. 2. 13-27. (In Persian)
24.Rodríguez-Sinobas, L., Zubelzu, S., Martín-Sotoca, J.J., and Tarquis, A.M. 2021. Multiscaling analysis of Soil Water Content during irrigation events. Comparison between surface and subsurface drip irrigation. Geoderma, 382, p.114777.
25.Samadianfard, S., Sadraddini, A.A., Nazemi, A.H., Provenzano, G., and Kisi, O. 2012. Estimating soil wetting patterns for drip irrigation using genetic programming. Spanish J. Agric. Res.10: 1155-1166.
26.Shiri, J., Karimi, B., Karimi, N., Kazemi, M.H., and Karimi, S. 2020. Simulating wetting front dimensions of drip irrigation systems: Multi criteria assessment of soft computing models. J. Hydrol. 585, p.124792.
27.Singh, D.K., Rajput, T.B.S., Sikarwar, H., and Ahmad, V.T. 2006. Simulation of soil wetting pattern with subsurface drip irrigation from line source. Agric. Water Manag. 83: 130-134.
28.Subbaiah, R. 2013. A review of models for predicting soil water dynamics during trickle irrigation, Irrig. Sci.31: 225-258.
29.Tamjid, M., Biglouei, M.H., Khaledian, M.R., Moridnejad, A., and Mohammadi, A. 2015. Comparison of Linear Regression and Neural Networks to Estimate the Wetting Dimensions on Sloping Lands. Journal of Water and Soil science, 24: 4. 237-246. (In Persian)
30.Zur, B. 1996. Wetted soil volume as a design objective in trickle irrigation. Irrigation Science, 16: 101-105.