ارزیابی حساسیت مدل WRF جهت شبیه‌سازی بارش‌های فوق‌سنگین، "مطالعه‌ی موردی: 26 اسفند 1397 تا 2 فروردین 1398"

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانش‌آموخته دکتری آب و هواشناسی سینوپتیک، گروه جغرافیای طبیعی، دانشگاه تهران

2 استادیار گروه محیط‌زیست، پژوهشکده خلیج‌فارس، دانشگاه خلیج‌فارس

چکیده

سابقه و هدف: با توجه به بزرگ‌مقیاس بودن شبکه‌ی محاسباتی مدل‌های سیاره‌ای این مدل‌ها قادر به پیش‌بینی متغیرهای آب و هواشناختی در مقیاس منطقه‌ای نیستند. به عبارت دیگر این مدل‌ها در ارائه پیش‌بینی‌های مربوط به نزولات منطقه‌ای تحت تأثیر فرایندهای با مقیاس ریزتر از شبکه مدل قرار می‌گیرند، که می‌بایست خروجی آن‌ها را به مقیاس منطقه‌ای تبدیل نمود. با این تفاسیر هدف از پژوهش حاضر، بررسی پیکربندی‌های مختلف مدل WRF در شبیه‌سازی بارش پنج روزه اسفندماه 1397 و فرورودین 1398 استان گلستان است که وقوع سیلاب ویرانگر و خسارات سنگین را در استان در پی داشته است.
مواد و روش‌ها: به منظور دست‌یابی به اهداف اشاره شده داده‌های دیدبانی و کنترل کیفی‌شده بارش در 13 ایستگاه‌ همدیدی استان گلستان برای دوره‌ی 5 روزه‌ی 26 اسفند 1397 تا 2 فروردین 1398 به صورت 24 ساعته (از ساعت 06 UTC روز قبل تا ساعت 06 UTC روز بعد) و 6 ساعته (ساعت‌های 00، 06، 12 و 18 UTC به ترتیب برابر با 3:30، 9:30، 15:30 و 21:30 محلی) مورد واکاوی قرار گرفت. سپس به منظور اجرای مدل WRF دو نوع داده ورودی شامل داده‌های شرایط اولیه و داده‌های شرایط مرزی استفاده گردید. از داده‌های سامانه‌ی پیش‌بینی جهانی با تفکیک 5/0 درجه به عنوان داده‌های شرایط مرزی بهره گرفته شده است. همچنین در راستای اجرای مدل، دو دامنه 1- بزرگ (مادر) دارای تفکیک افقی 18 کیلومتر و 2- دامنه درونی که دامنه‌ی اصلی و دارای تفکیک افقی 6 کیلومتر است، استفاده گردید.
یافته‌ها: با بررسی داده‌های بارش تجمعی دوره‌ی بارشی 5 روزه که منجر به رخداد سیل گردید، مشخص شد که بیشینه‌ی بارش 24 ساعته در طول دوره 5 روزه به ساعت 06 UTC روز 27 اسفند تا ساعت 06 UTC روز 28 اسفند و بیشینه‌ی بارش تجمعی 6 ساعته نیز به ساعت 06 تا 12 UTC روز 27 اسفند 1397 اختصاص دارد. سپس با بررسی پژوهش‌های یادشده در ارتباط با بارش ایران، پیکربندی‌های مختلف استخراج و با به کارگیری و ترکیب این پیکربندی‌ها در اجراهای متنوع، پیکربندی‌های متفاوتی برای پیش-بینی بارش اواخر اسفند سال 1397 استان گلستان حاصل شد. در ادامه به منظور تشخیص دقت مدل، مقادیر حاصل از مدل در پیکربندی‌های مختلف با مقادیر ایستگاه‌های همدیدی مقایسه شدند که برای اطمینان از این مقایسه از آماره‌های خطاسنجی MAE، d، R و ENS استفاده گردید.
نتیجه‌گیری: در بین تمامی پیکربندی‌ها، دو پیکربندی خروجی‌های بهتری را به نمایش گذاشتند. نتایج نشان داد که مدل WRF در اغلب ایستگاه‌ها با بیش‌برآوردی همراه بوده است. در هر دو پیکربندی هسته‌های بارشی به خوبی به تصویر کشیده شده است و از منظر مقادیر بارشی نیز دقت مدل مناسب بوده است. در رابطه با مقادیر بیشینه‌ی بارش پیکربندی نوع اول از دقت بهتری برخوردار است؛ و در مجموع پیکربندی نوع اول عملکرد بهتری را نسبت به پیکربندی نوع دوم به نمایش گذاشته است.

کلیدواژه‌ها


عنوان مقاله [English]

Assessment of WRF model sensitivity for simulating super heavy Precipitation, "Case study: 17 to 22 March 2019"

نویسندگان [English]

  • Mohammad Hasan Mahoutchi 1
  • Esmail Abbasi 2
1 Ph.D. Graduate of Synoptic Climatology, Dept. of Physical Geographic, University of Tehran
2 Assistant Prof., Dept. of Environment, Persian Gulf Research Institute, University of Persian Gulf
چکیده [English]

Background and purpose: The large-scale computational network of planetary models are not able to predict climatic variables on a regional scale. In other words, these models are affected by processes with a smaller scale than the model network in providing predictions of regional precipitation. Therefore, the model outputs should convert into a regional scale. The research purpose is to investigate the different configurations of the WRF model in the simulation of 5-days rainfall in March 17 to 22 March 2019 in Golestan province, which has caused devastating floods and heavy damage in the province.
Materials and Methods: The observation and quality control precipitation data was analyzed in 13 synoptic stations of Golestan province for a 5-days period from March 17 to 22 March 2019 in the form of 24 Hours (From 06 UTC the day before to 06 UTC the next day) and 6 hours (00, 06, 12 and 18 UTC are 3:30, 9:30, 15:30 and 21:30 local time, respectively). Also, two types of input data including initial condition data and boundary condition data were used in the WRF model. The boundary condition data was GFS data with 0.5-degree resolution. Furthermore, two domains were used in WRF model, 1) the large (mother) with a horizontal resolution of 18 km and 2) internal domain, which is the main domain and has 6 km horizontal resolution.
Results: Two configuration was selected which showed better output results. The 5-days cumulative precipitation data which caused the flood show that the maximum 24-hour precipitation during the 5-days period is 06:00 UTC on March 18 to 06:00 UTC March 19 and the maximum cumulative rainfall of 6 hours is related to 06 to 12 UTC on March 18, 2019. Subsequently, by study similar research in Iran, different configurations for precipitation prediction were extracted and modeled. Then, in order to determine the accuracy of the model, the values obtained from the model in different configurations were compared with the values of synoptic stations. To ensure this comparison, MAE, d, R and ENS test statistics were used.
Conclusion: The results showed that the WRF model overestimate the precipitation data in most stations. In both configurations, results convey the precipitation cores well illustrated and the model accuracy was good enough in predicting precipitation. In maximum values of precipitation, the configuration of the first type show better results. Overall, the first type configuration performed more accurate than the second type configuration.

کلیدواژه‌ها [English]

  • Simulation
  • Downscaling
  • WRF model
  • Precipitation
  • Golestan flood
1.Abbasi, E., and Etemadi, H. 2019. Numerical modeling of the atmospheric phenomenon causes of water logging in Persian Gulf coastal area. J. of Environmental Science and Technology. 23: 104. 103-114. (In Persian)
2.Ahmadi, M., Lashkari, H., Keikhosravi, Gh., and Azadi, M. 2016. Comparing the performance of LARS_WG and RegCM4 models in simulating and post-processing of annual temperature and rainfall data in Great Khorasan. J. of Geographical Data (SEPEHR). 25: 98. 157-170. (In Persian)
3.Amini, L., Parhizkar, D., and Khakian, G. 2015. The performance of WRF modelin heavy precipitation forecasting With
a resolution of 27, 9 and 3 km inEsfahan province. The Second National Conference on Flood Management and Engineering with the Approach of Urban Flooding, Tehran. (In Persian)
4.Asakerh, H., and Shadman, H. 2019. A Capability Assessment of the SDSM Model to Simulate Mean Temperature
of Urmia City. J. of Geography and Environmental Planning, 29: 4. 89-107. (In Persian)
5.Rajitha, A., Thaileng, T., Panduka, N., Monica, P., Sorlaty, S., Larxoy, L., Sengkeo, K., and Viengkham, S. 2021, Evaluating the Performance of a WRF Physics Ensemble in Simulating Rainfall over LaoPDR during Wet and Dry Seasons, Advances in Meteorology, vol, 2021, Article ID 6630302, 1-16. https://doi.org/10.1155/2021/6630302.
6.Azadi, M., Taghizadeh, E., and Memarian, M.H. 2012. Verification of WRF Precipitation Forecast over Iran Country during Nov.2008-Jun.2009.J. of Iran-Water Resources Research.8: 2. 48-59. (In Persian)
7.Azadi, M., Shirgholami, M.R., Hajjam, S., and Sahraian, F. 2012b. WRF Model Output Postprocessing for Daily Precipitation over Iran M. J. of IranWater Resources Research. 7: 4. 81-71. (In Persian)
8.Azadi, M., Kalateh Seifri, Z., and Jafari, S. 2009. Performance evaluation of WRF model in Iran for rainfall prediction using different physical schemas: A case study. Twelfth Conference on Fluid Dynamics. Noshirvani Babol University of Technology. 10-8 May. Pp: 1-7. (In Persian)
9.Davis, C.A., Wang, W., Chen, Y.R., Corbosiero, K., Dudhia, J., and Holland, G. 2006. Advanced research WRF developments for hurricane prediction [presentation]. In 7th WRF Users' Workshop. University Corporation for Atmospheric Research (UCAR), Boulder, CO, US.
10.Done, J.M., L.R. Leung, and B.K. 2006. Understanding error in the long-term simulation of warm season rainfall using the WRF model., In 7th WRF Users' Workshop. University Corporation for Atmospheric Research (UCAR), Boulder, CO, US.
11.Dubrovsky, M. 1996. Validationof the stochastic Weather GeneratorMet & ROLL. Meteorogickeo Zpravy, 49: 129-138.
12.Düzenli, E., Pilatin, H., Yücel, İ., Kılıçarslan, B., and Yılmaz, M.T. 2020. Evaluation of the performance of WRF model in extreme precipitation estimation concerning the changing model configuration and the spatial and temporal variations. EGU General Assembly 2020, Vienna, Austria. https:// doi.org/10.5194/egusphere-egu2020-1026.
13.Goodarzi, L., Banihabib, M.E., and Ghafarian, P. 2018. Evaluation of the WRF model performance for heavy rainfall simulation A Case Study of the Kan Basin in Iran. J. of Water andSoil Conservation. 25: 1. 229-242.(In Persian)
14.Goodarzi, M. Hoseini, M., and Parekar, M. 2017. Evaluation of Statistical Downscaling Method in Simulation of Climate Change of Karkheh Basinup to the Karkheh Dam. Jwmseir.10: 35. 51-65. (In Persian)
15.Hewitson, B.C., and Crane, R.G. 2006. Consensus between GCM Climate Change Projections with Empirical Downscaling: Precipitation Downscaling over South Africa. Int. J. Climatol.26: 1315-1337.
16.Houshyar, M., Sobhani, B., and Hosseini, S.A. 2018. Future projection of Maximum Temperature in Urmia through Downscaling output of CanESM2 Model. Quarterly Journal of Geography and lanning. 22: 63. 305-325. (In Persian)
17.Hu, T.S., Lam, K.C., and Ng, S.T. 2001. River flow time series prediction with a range dependent neural network. Hydrological Science Jou Rnal.46: 729-745.
18.Kalnay, E., Kanamitsu, M., and Baker, W. 1990. Global Numerical Weather Prediction at the National Meteorological Center. Bulletin of the American Meteorological Society.71: 10. 1410-1428.
19.Karori, M. 2008. Downscaling NCC CGCM output for seasonal precipitation predication over ISLAMABAD- PAKISTAN. Pakistan Journal of Meteorology. 4: 59-72.
20.Khorshiddoust, A.M., Mofidi, A., Rasuly, A.A., and Azarm, K. 2017. Evaluating the sensitivity of RegCM4 model to types of Convection Parameterization Schemes on the modeling of springtime precipitation in the North West of Iran: (Case Study: Spring 2004). Journal of the Earthand Space Physics. 43: 3. 651-671.(In Persian)
21.Kiani, M. Gheysari, M., and Mostafazadeh-Fard, B. 2013. Estimation of genetic coefficients and evaluation of OILCROP-SUN model under different levels of nitrogen fertilizer. Journal of Soil and Water Resources Conservation. 2: 3. 1-11. (In Persian)
22.Kryza, M., Werner, M., Wałszek, K., and Dore, A.J. 2013. Application and evaluation of the WRF model for high-resolution forecasting of rainfall-a case study of SW Poland. Meteorologische Zeitschrift, 22: 5. 595-601.
23.Kumar, A., Dudhia, J., Rotunno, R., Niyogi, D., and Mohanty, U. 2008. Analysis of the 26 July 2005 heavyrain event over Mumbai, India usingthe Weather Research and Forecasting (WRF). Q.J.R. Meteoral. Soc.134: 1897-1910.
24.Laifang, L., Wenhong, L., and Jiming, J. 2014. Improvements in WRF simulation skills of southeastern United States summer rainfall: physical parameterization and horizontal resolution. Climate Dynamics. 43: 7-8. 2077-2091.
25.Landis, R.C. 1994. Comments on Forecasting in meteorology. Bulletin American Meteorological Society (BAMS). 75: 823-827.
26.Mahmoodi, Z., Bahremand, A., Abdollahi, K., Sadoddin, A., Kuhestani, S., and Komaki, C. 2020. Investigation of Temporal and Spatial Variations of Water Balance Components and Hydrograph Separation of Arazkouse Watershed through Groundwater Recharge Modeling using WetSpass Model. Journal of Water and Soil Conservation, 27: 1. 25-47. doi: 10. 22069/jwsc.2020.17733.3330. (In Persian)
27.Mazidi, A., Jafari Zoj, F., and Heidary, S. 2015. Simulation of Dust Storm Events on February 28, 2009 in Fars province Using WRF Model. J.of Applied Climatology. 2: 2. 48-68.(In Persian)
28.Moosavi, S.M., Zarrin, A., Mofidi, A., and Hosseini, S.F. 2017. Investigating the relationship between the frequency of thunderstorms and temperature trend in Mashhad. GeoRes. 32: 3. 74-87.(In Persian)
29.Moeng, C.H., Dudhia, J., Klemp, J.B., and P.P.S. 2007. Examining two-way grid nesting for large eddy simulation of the PBL using the WRF model. Mon. Wea. Rev. 135: 2295-2311.
30.Moya-Álvarez, A.S., Gálvez, J., Holguín, A., Estevan, R., Kumar, S., Villalobos, E., Martínez-Castro, D., and Silva, Y. 2018. Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru. Atmosphere, 9: 9. 1-20. https://doi.org/10.3390/ atmos9090362.
31.Nazemosadat, S.M.J., and Ravan, V. 2011. Prediction of temperature and precipitation fluctuations in the central zone of Fars province for the period 2011-2040 with similar use to ECHAM. J. of Water Resources Engineering.4: 10. 51-62. (In Persian)
32.Pennelly, C., Reuter, G., and Flesch, T. 2014. Verification of the WRF model for simulating heavy precipitation
in Alberta. Atmospheric Research.135: 172-192.
33.Rezazadeh Judi, A., and Sattari, M. 2017. Evaluate the performance of various methods in reconstructing monthly precipitation data. Applied Research in Geographical Sciences (Geographical Sciences), 16: 42. 155-176. https://www.sid.ir/fa/journal/ViewPaper.aspx?id=358139. (In Persian)
34.Safar, M., and Ahmadi Givi, F. 2017. Optimal run-time selection of convection scheme based on radar data in the WRF model for short-range precipitation prediction. Journal of the Earth and Space Physics. 43: 3. 585-600. (In Persian)
35.Salimi Masteali, A., Khoshkhoo, Y., and Gholizadeh, M. 2019. Evaluating and Zoning of the Extreme Rainfalls Occurrence Risk in West of Iran. Journal of Water and Soil Conservation, 26: 1, 49-69. doi: 10.22069/ jwsc.2019.15685.3086. (In Persian)
36.Sasanian, S., Azadi, M., and Ghorban Fallah, R. 2015. Evaluate the performance of the WRF model with different physical options for predicting Wintertime precipitation on the southwest of Iran. The first scientific research congress on the development and promotion of agricultural sciences, natural resources and environment of Iran. Pp: 1-12. (In Persian)
37.Shamsipoor, A.A. 2013. Climate Modelin, Theory and Method. Tehran Univ. Press, 287p. (In Persian)
38.Sedaghat Kerdar, A., and Fattahi, E. 2008. Drought forecast indicators in Iran. J. of Geography and Development Iranian Journal. 6: 11. 59-76. (In Persian)
39.Shuman, F.G. 1989. History of numerical weather prediction atthe National Meteorological Center. Weather and Forecasting. 4: 286-296.
40.Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D., Duda, M.G., and Powers, J.G. 2019. A Description of the Advanced Research WRF Version 3 (No. NCAR/TN-475+STR). University Corporation for Atmospheric Research. 1-125. doi:10.5065/D68S4MVH.
41.Special Reporting Committee on Iran Floods. 2019. The 2019 Iran Floods Narrative. Pp: 1-122. (In Persian)
42.Taghavi, F., Neyestani, A., and Ghader, S. 2013. Short range precipitation forecasts evaluation of WRF model over IRAN. Journal of the Earth and Space Physics. 39: 2. 145-170. (In Persian)
43.Taylor, Karl E. 2001. Summarizing multiple aspectsof model performance in a single diagram, Journal of Geophysical Research, 106: D7. 7183-7192.
44.Zakeri, Z., Azadi, M., and Sahraeiyan,F. 2014. Verification of WRF forecasts for precipitation over Iran in the
period Feb-May 2009
. J. of NIVAR,38: 87-86. 3-10. (In Persian)
45.Zandi Darreh Gharibi, F., and Khorsandi Kohanestani, Z., and Mazin, M., and Arman, N. 2017. Technical report: Investigation of efficiency of GR4J and GR2M runoff models in flow simulation of Darreh Takht watershed. Watershed Engineering and Management, 9: 3. 360-370. https://www.sid.ir/fa/ journal/ ViewPaper. aspx?id=360411. (In Persian)
46.Zoljoodi, M., Ghazi Mirsaeed, M., and Seifari, Z. 2013. Verification of WRF model On Accuracy and Precision of Various Schemes and Evaluation of Precipitation Forecast in Iran. GeoRes. 28: 2. 187-194. (In Persian)
47.Willmott, C.J. 1982. Some Comments on the Evaluation of Model Performance. Bulletin American Meteorological Society. 63. 1309-1313.