مقایسه مدل‌های نفوذ آب با تکیه بر تحلیل عدم قطعیت پارامتر در دو نوع بافت خاک

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 علوم و مهندسی آب،دانشکده کشاورزی،دانشگاه بیرجند،بیرجند،ایران

2 دانشگاه بیرجند گروه مهندسی آب

3 عضو هیات علمی دانشگاه بیرجند

چکیده

سابقه و هدف: یکی از مواردی که در حفظ منابع آبی کشور می‌توان انجام داد مصرف بهینه‌ی آب در بخش کشاورزی و جلوگیری از هدررفت آب‌های سطحی می‌باشد. یکی ازمؤلفه‌هایی که در این امر نقش بسزایی دارد مسئله‌ی نفوذ آب در خاک است. نفوذ پذیری آب در خاک به شدت به عوامل محیطی، شرایط آب و هوایی، عرض جغرافیایی و مشخصات خاک بستگی دارد و دارای تغییر پذیری مکانی بالایی است. محققین مختلف از مدل‌های مختلفی برای پیش بینی مقدار نفوذ آب در خاک استفاده می‌کنند که پیش بینی درست مقدار نفوذ و شناخت میزان خطا و عدم قطعیت هر یک از این مدل‌ها با توجه به شرایط هر منطقه، امری ضروری است. تحقیقات زیادی در مورد برآورد کارایی مدل‌های نفوذ آب در خاک انجام شده است، که در عموم این تحقیقات، صرفاً به بررسی مدل‌های نفوذ و تأثیر قرار دادن فقط یکی از عوامل مؤثر بر نفوذ، پرداخته شده است. به این منظور هدف از این تحقیق، ارزیابی مدل‌های نفوذ و تحلیل عدم قطعیت این مدل‌ها با الگوریتم GLUE، با توجه به شرایط منطقه و تأثیر قرار دادن توأمان چند عامل مؤثر بر فرآیند نفوذ، می‌باشد.
مواد و روش‌ها: در این تحقیق، اندازه‌گیری مقدار نفوذ در یکی از مزارع شهرستان رشتخوار در سه تکرار آزمایش و در دو بافت خاک لوم شنی و لوم رسی با استفاده از روش استوانه‌ی مضاعف انجام شد. ارزیابی و تحلیل عدم قطعیت روی چهار مدل نفوذ کاستیاکف، SCS، فیلیپ و هورتون صورت گرفت. برای تعیین عدم قطعیت این چهار مدل، از الگوریتم GLUE در محیط برنامه نویسی متلب استفاده گردید به این صورت که با اتصال این مدل‌های نفوذ به GLUE، با 100000 تکرار، شبیه سازی انجام شد. یک درصد از بهترین شبیه سازی‌های انجام شده (1000 تکرار آن) به عنوان بهترین شبیه سازی‌ها انتخاب شدند. با رسم توزیع پسین پارامترها و رسم محدوده‌ی اطمینان 95 درصد خروجی شبیه سازی شده، عدم قطعیت پارامترهای مدل تعیین شد.
یافته‌ها: به منظور کمی سازی نتایج عدم قطعیت، از معیارهای "درصد قرارگیری داده‌های اندازه‌گیری شده در محدوده اطمینان مورد نظر، پهنای باند داده‌های شبیه سازی شده در محدوده اطمینان مورد نظر و دو معیار درجه عدم تقارن داده‌های شبیه سازی شده در محدوده اطمینان مورد نظر" که به اختصار به ترتیب با حروف " P، d، s و T " نمایش داده شده است، استفاده شد نتایج نشان داد که پارامترهای مدل کاستیاکف در هر دو بافت خاک با مقدار P بیشتر، d کمتر، s بین صفر و 5/0 و T بین صفر و یک، عدم قطعیت کمتری را نشان می-دهند به طوریکه مقدار این شاخص‌ها به ترتیب در خاک لوم شنی برابر با 100، 378/0، 055/0 و 388/0 و در خاک لوم رسی برابر با 100، 519/0، 147/0 و 558/0 به دست آمد.
نتیجه گیری: با توجه به چهار معیار P، d، s و T ملاحظه شد که پارامترهای مدل کاستیاکف قطعیت بیشتری نسبت به پارامترهای سایر مدل ها برخوردار بود که می‌توان این مدل را به عنوان یک مدل مناسب در نظر گرفت.

کلیدواژه‌ها


عنوان مقاله [English]

The Comparing of Infiltration Models through Parameters Uncertainty Analysis into Two Types of Soil Texture

نویسندگان [English]

  • Ebrahim Alinia 1
  • Mohsen Pourreza Bilondi 2
  • Abbas Khashei-Siuki 3
1 Water Science and Engineering, Faculty of Agriculture, Birjand University, Birjand, Iran
2
3 Faculty member of Birjand University
چکیده [English]

Background and objectives: One of the main important strategies can be achieved to preserve the water resources is the optimal use of water in the agricultural sector. Water infiltration as a key component of water resource plays a significant role in this challenging problem. Water permeability in soil strongly depends on environmental factors, climatic conditions, latitude and soil characteristics, and has high spatial variability. The various simulation models are used to predict the amount of water infiltration in the soil. there have been a lot of research on the estimation of water infiltration models in the soil, which has been studied in the public only to study the models of infiltration and influence only one of the effective factors on infiltration. The proper prediction of the infiltration and the uncertainty assessment of these models through GLUE (Generalized Likelihood Uncertainty Estimation) algorithm, considering the region conditions and the combined effect of several factors affecting the infiltration process, is main aim of this study.

Materials and methods: Their measurement is conducted in one of the farms of the county in Roshtkhar. The required measurements through double cylindrical method were carried out in three iterations and in two different soil textures, sandy loam and clay loam. In this research, the uncertainty assessment was performed by four models of Kostiakov, SCS, Philip and Horton infiltration. Uncertainty prediction of these four models through GLUE (Generalized Likelihood Uncertainty Estimation) algorithm was used in the MATLAB programming environment, with 100,000 iterations. GLUE mapped all sources of uncertainty into parameter uncertainty. Moreover GLUE conceptual simplicity and it flexibility has led to this method being considered as one of the most applied methods in the uncertainty evaluation in other sciences in last decade studies. Here one percent of best simulations were selected to define the 95percent prediction uncertainty. Hence posterior distribution of each model parameters is plotted and assessed.
Results: In order to quantify the results of uncertainty, four indicators "the percentage of data placement measured in the desired confidence ranges, the bandwidth of the simulated data in the desired confidence range, the degree of asymmetry of the simulated data in the desired confidence range", which is briefly depicted in letters" P, d, s, and T ", respectively. The results showed that the parameters of the Kostiakov model in both soil texture with a value of P greater, d less, s between zero and 0.5 And T between zero and one show more certainty, so that the values of these indicators in sandy loam soils equal to 100, 0.378, 0.055 and 0.388 respectively, and in clay loam soils In 100, 0.519, 0.147 and 0.558 respectively.

Conclusion: According to the four P, d, s, and T indices, it was found that the paramteres of Kostiakov model has more certainty than other model parameters, which can be considered as an appropriate model.

کلیدواژه‌ها [English]

  • Models of Infiltration
  • Uncertainty
  • GLUE
  • Simulating the water infiltration into soil
  • Roshtkhar
1.Aghakhani Afshar, A., Hassanzadeh,Y., Pourreza Bilondi, M., and Memarian, H. 2019. Uncertainty analysis of a continuous hydrological model using DREAM-ZS algorithm. Iran. J. Sci. Technol. 44: 2-4. 1-17.
2.Ahmadi Zadeh, M., and Maroofi, S. 2017. Bayesian analysis and particle filter application in rainfall-runoff models and quantification of uncertainty. J. Water Soil Cons. 24: 1. 251-264.
3.Beven, K. 1993. Prophecy, reality and uncertainty in distributed hydrological modelling. Advances in water resources. 16: 1. 41-51.
4.Beven, K., and Binley, A. 1992. The future of distributed models: model calibration and uncertainty prediction. Hydrological processes. 6: 3. 279-298.
5.Blasone, R.S., Madsen, H., and Rosbjerg, D. 2008. Uncertainty assessment of integrated distributed hydrological models using GLUE with Markovchain Monte Carlo sampling. J. Hydrol. 353: 1-2. 18-32.
6.Clausnitzer, V., Hopmans, J.W., and Starr, J.L. 1998. Parameter uncertainty analysis of common infiltration models. Soil Sci. Soc. Amer. J. 62: 6. 1477-1487.
7.Dzotsi, K.A., Basso, B., and Jones, J.W. 2013. Development, uncertainty and sensitivity analysis of the simple SALUS crop model in DSSAT. Ecological Modelling. 260: 62-76.
8.Fakuri, T., Imami, H., and Gahreman, B. 2011. Effect of different uses on water penetration in soil. Water Research in Agriculture. 25: 2. 195-205.
9.Hamraz, B., Akbarpour, A., and Pourreza-Bilondi, M. 2015. Assessment of parameter uncertainty of modflow model using glue method (case study: birjand plain). J. Water Soil Cons.
22: 6. 61-79.
10.Imamifar, S., Davari, K., Ansari, H., Gahreman, B., Hosseini, M., and Nasseri, M. 2016. Uncertainty Analysis of DWB Model Using GLUE Method (Case Study: Novel Andarab andFaroub Watersheds). J. Water Soil Cons.6: 1. 125-142.
11.Jafarzadeh, M., Rouhani, H., Salmani, H., and Fath Abadi, A. 2016. Reducing uncertainty in a semi distributed hydrological modeling within theglue framework. J. Water Soil Cons.23: 1. 83-100.
12.Jin, X., Xu, C.Y., Zhang, Q., and Singh, V.P. 2010. Parameter and modeling uncertainty simulated by GLUE anda formal Bayesian method for a conceptual hydrological model. J. Hydrol. 383: 3-4. 147-155.
13.Neshat, A., and Pareh Kar, M. 2007. Comparison of methods for determining the velocity of water penetrationin soil. J. Agric. Sci. Natur. Resour.14: 3. 186-195.
14.Nourali, M., Ghahraman, B., Pourreza Bilondi, M., and Davary, K. 2017. Uncertainty estimation of HEC-HMS flood simulation model using Markov Chain Monte Carlo Algorithm. J. Water. Manage. Res. 8: 15. 235-249.
15.Pourreza Bilandi, M., Akhund Ali, A.M., Ghaherman, B., and Talouri, R. 2014. Uncertainty Analysis a single event distributed rainfall-runoff model with using two different Markov Chain Monte Carlo methods. J. Soil Cons. Res. 21: 5. 1-26.
16.Sepahvand, A., Tayyi Semiromi, M., Mirnia, Kh., and Moradi, H.R. 2010. Evaluation of the sensitivity of penetration models to soil moisture variability. J.Soil Water (Agricultural Sciences and Technology). 25: 2. 338-346.
17.Shafiei, M., Ghaherman, B., Saghafian, B., Davari, K., and Vazifeh Doost, M. 2014. Calibration and uncertainty analysis of SWAP model usingGLUE method. J. Water Res. Agric.28: 2. 477-488.
18.Shukla, M., Lal, R., Owens, L., and Unkefer, P. 2003. Land use and management impacts on structure and infiltration characteristics of soils in the North Appalachian region of Ohio. Soil Science. 168: 3. 167-177.
19.Stedinger, J.R., Vogel, R.M., Lee, S.U., and Batchelder, R. 2008. Appraisal of the generalized likelihood uncertainty estimation (GLUE) method. Water resources research. 44: 12.
20.Vrugt, J.A., Ter Braak, C.J., Gupta, H.V., and Robinson, B.A. 2009. Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling?. Stochastic environmental research and risk assessment. 23: 7. 1011-1026.
21.Yan, Y., Liu, J., Zhang, J., Li, X., and Zhao, Y. 2017. Quantifying soil hydraulic properties and their uncertainties by modified GLUE method. International Agrophysics.31: 3. 433-445.
22.Yen, B.C., and Tang, W.H. 1976. Risk-Safety Factor Relation for Storm Sewer Design. J. Environ. Engin. Div. ASCE. 102(EE2): 509-516.