بررسی تأثیر تغییر اقلیم بر پراکنش جغرافیایی گاوزبان وحشی در استان خراسان رضوی

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 گروه مهندسی طبیعت و گیاهان دارویی، دانشگاه تربت حیدریه

2 دانشگاه تربت حیدریه

چکیده

سابقه و هدف: تغییرات اقلیمی که در اثر فعالیت‌های انسانی در سده‌های گذشته آغاز شده‌اند، با گذشت زمان و در اثر پس‌خورهای مثبت، تشدید شده‌اند. تغییر در ویژگی‌های محیط زیست موجودات زنده به طور قطع بر حیات آن‌ها تأثیر گذار است. در یک دهه اخیر مطالعات زیادی بر نوع، ابعاد و میزان این تأثیر بر موجودات زنده مختلف (از جمله گیاهان) در اقالیم و اکوسیستم‌های مختلف متمرکز شده‌اند. در این پژوهش اثر تغییر اقلیم تا سال 2080 میلادی تحت سناریوی اقلیمی RCP 8.5 و تحت مدل گردش عمومی HadGem2 بر پراکنش جغرافیایی گونه Anchusa italica Retzius. در استان خراسان رضوی بررسی شد. این گونه علی‌رغم اهمیت دارویی، حفاظتی، اقتصادی و حتی تا حدودی علوفه‌ای که دارد، تا کنون مورد مطالعه قرار نگرفته بوده است. تاثیر تغییر اقلیم بر گونه‌های مهم تنها می‌تواند از طریق مدلسازی بررسی شود، چرا که مطالعات مدلسازی در علوم طبیعی، کارگشای بسیاری از مسائل هستند که در مطالعات عادی قابل پیگیری نیستند.
مواد و روش‌ها: ابتدا مطالعات صحرایی شامل برداشت مختصات جغرافیایی نقاط حضور گونه مورد مطالعه در محدوده مراتع استان خراسان رضوی در اواخر بهار سال 1397 (زمانی که گیاه در حال گلدهی بوده و به آسانی قابل رؤیت و شناسایی است) انجام شد و در نتیجه تعداد 113 نقطه حضور برای گونه Anchusa italica ثبت شد. سپس از 19 متغیر بیوکلیماتیک (زیست-اقلیمی) به همراه 3 متغیر فیزیوگرافیک شیب، جهت شیب و ارتفاع از سطح دریا به عنوان ورودی‌های مدل GBM استفاده شد. این مدل که یکی از روش‌های مبتنی بر درخت‌های تصمیم‌گیری است، از تعداد زیادی درخت ناقص برای تشکیل مدل نهایی استفاده می‌کند و الگوریتم آن، در محیط نرم‌افزار R برنامه‌نویسی شد. مدل با ورود نقاط حضور گونه و شرایط اقلیمی و توپوگرافی حال حاضر به عنوان متغیرهای مستقل، رابطه بین حضور گونه و شرایط اقلیمی را شبیه‌سازی کرده و سپس از این شبیه‌سازی برای بررسی اثر تغییر در مؤلفه‌های اقلیمی بر پراکنش گونه استفاده می‌کند. دو شاخص مخصوص صحت‌سنجی (AUC و TSS) برای تعیین توان مدل به کار رفت.
نتایج: نقشه‌های مناطق مناسب برای زیست گاوزبان وحشی در شرایط اقلیمی فعلی و تحت تغییرات اقلیمی در سال 2080 تهیه شدند و شاخص‌های ارزیابی مدل نشان دادند که مدل توانایی بالایی در پیش‌بینی مکان‌های مناسب برای حضور گونه داشته است (AUC=0.974 و TSS=0.87). متغیرهای اقلیمی دمای سالیانه (BIO1)، میانگین دامنه دمای روزانه (BIO2)، تغییرات فصلی بارندگی (BIO15) و مجموع بارندگی سالیانه (BIO12) بیشترین تاثیر را در تناسب رویشگاه این گونه دارند. تغییر مقدار رویشگاه‌های مناسب برای این گونه در منطقه، بر مبنای شرایط حال حاضر نشان داد که با سناریوی RCP 8.5 (از سری سناریوهای انتشار IPCC)، مجموعاً حدود 40 درصد از مساحت اراضی دارای تناسب اقلیمی برای این گونه کاسته می‌شود. مناطقی که تغییرات در رویشگاه این گونه در آنها رخ می‌دهد در یک نقشه نمایش داده شدند.
نتیجه‌گیری: عکس‌العمل گیاهان به تغییر اقلیم را به سه گروه سازگاری، جابجایی و انقراض تقسیم کرده‌اند. با توجه به نتایج این مطالعه، در مورد گونه گاوزبان وحشی، به نظر نمی‌رسد که انطباق فیزیولوژیک با تغییرات در کوتاه مدت (کمتر از چندصد تا چندهزار سال) ممکن باشد. بنابراین اگر این گیاه نتواند محدوده پراکنش خود را تغییر دهد (جابجایی)، ناگزیر به انقراض محلی یا محدود شدن به پناهگاه-ها خواهد بود. بنابراین لازم است تا در کنار فعالیت‌های بازدارنده تغییر اقلیم، برنامه‌ریزی‌های محلی و منطقه‌ای برای حفظ و گسترش رویشگاه‌های فعلی و همچنین تامین شرایط دسترسی به رویشگاه‌های جدید برای این گونه مهم از لحاظ زیستی، اکولوژیکی، دارویی و اقتصادی صورت پذیرد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of climate change on the geographical distribution of wild borage in Khorasan Razavi

نویسندگان [English]

  • Jalil Farzadmehr 1
  • Hamed Sangoony 2
1 Department of Nature engineering and medicinal plants, University of Torbat heydarieh
2 university of Torbat heydarieh
چکیده [English]

Background and objectives: Climate change which has begun due to human activities in the past centuries, intensified through positive feedbacks as time goes by. Changes in the characteristics of the environment of organisms definitely affect their lives. In the last decade, many studies have focused on the type, size, and extent of this effect on different organisms (including plants) in various ecosystems. In this study, the effect of climate change on the geographical distribution of Anchusa italica in Khorasan Razavi province was investigated at 2080 with RCP 8.5 and under the HadGem2 general circulation model. Despite its medicinal, conservational, economic and even forage importance, this species has never been studied. The impact of climate change on important species can only be examined through modeling, because modeling studies in the natural sciences are the key of many issues that cannot be tracked in normal studies.
Materials and methods: At first, field studies were carried out including the record of geographical coordinates of the species presence in the rangelands of Khorasan Razavi province in late spring of 2018 (when the plant was flowering and easily visible and identified) and 113 presence points was recorded for Anchusa italica. Then the 19 bioclimatic variables alongside three topographic variables were used as inputs to GBM model. This model, which is a decision trees based methods, uses numerous incomplete trees to form the final model, and the algorithm required in this study was programmed in the R environment. The model simulates the relationship between the presence of species and climatic and topographical conditions, and then uses this simulation to study the effect of changes in climatic factors on the distribution of species. Two validation indices (AUC and TSS) were used to determine the model's potency.
Results: The maps of suitable areas for wild borage in current climatic conditions and under climate change in 2080 were prepared and the model assessment indices showed that the model has a high ability to predict suitable sites for species presence (AUC = 0.974 and TSS = 0.87). Habitat suitability of this species was highly affected by (BIO1), (BIO2), (BIO15) and (BIO12). Results showed that in comparison with current conditions, about 40% of the climatic suitable area for this species will be diminished with the RCP 8.5 (from the IPCC scenario series). The areas where changes in the habitat of this species occur are displayed in a map.
Conclusion: The effect of climate change on plants is divided into three groups: Adaptation, Shifting and Extinction. According to the results of this study, in the case of wild borage, physiological adaptation is not likely to be possible in the short term (less than few centuries to few millennia). So if this plant fails to alter its distribution range (Shifting or displacement), will have to choose the third way (local extinction or get limited to refuges). Therefore, it is necessary to plan local, national and regional programs to maintain and extend the current habitats of this biological, ecological, medicinal and economic important species and providing access to new habitats for it; alongside the preventive activities of climate change.

کلیدواژه‌ها [English]

  • Range shift
  • Wild borage (Anchusa italica)
  • Bioclimatic variables
  • Ecological niche
 1.Al-Snafy, A. 2014. The pharmacology of Anchusa italica and Anchusa strigosa, a review. Inter. J. Pharm. Pharmaceut. Sci. 6: 4. 7-10.
2.Allouche, O., Tsoar, A., and Kadmon, R. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43: 1223-32.
3.Anderson, R.P. 2013. A framework for using niche models to estimate impacts of climate change on species distributions. Annals of the New York Academy of Sciences. 1297: 8-28.
4.Araujo, M.B., and Guisan, A. 2006. Five (or so) challenges for species distribution modelling. J. Biogeograph. 33: 1677-88.
5.Archer, S.R., and Predick, K.I. 2008. Climate change and ecosystems of the southwestern United States. Rangelands. 30: 23-8.
6.Attorre, F., Francesconi, F., Taleb, N., Scholte, P., Saed, A., Alfo, M., and Bruno, F. 2007. Will dragonblood survive the next period of climate change? Current and future potential distribution of Dracaena cinnabari (Socotra, Yemen). Biological Conservation. 138: 430-9.
7.Aurambout, J., Finlay, K., Luck, J., and Beattie, G. 2009. A concept model to estimate the potential distribution of the Asiatic citrus psyllid in Australia under climate change-A means for assessing biosecurity risk. Ecological Modelling. 220: 2512-24.
8.Bakkenes, M., Alkemade, J., Ihle, F., Leemans, R., and Latour. J. 2002. Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Global change biology. 8: 390-407.
9.Braunisch, V., Coppes, J., Arlettaz, R., Suchant, R., Schmid, H., and Bollmann, K. 2013. Selecting from correlated climate variables: a major source of uncertainty for predicting species distributions under climate change. Ecography. 36: 971-83.
10.Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.I. 1984. Classification and regression trees. Taylor & Francis, California, 368p.
11.Collevatti, R.G., Nabout, J.C., and Diniz-Filho, J.A.F. 2011. Range shift and loss of genetic diversity under climate change in Caryocar brasiliense, a Neotropical tree species. Tree Genetics & Genomes. 7: 1237-47.
12.DE’ATH, G. 2007. Boosted trees for ecological modeling and prediction. Ecology. 88: 243-51.
13.Elith, J., Leathwick, J.R., and Hastie, T. 2008. A working guide to boosted regression trees. J. Anim. Ecol. 77: 802-13.
14.Flom, P.L. 1999. Multicollinearity diagnostics for multiple regression: A Monte Carlo study. ETD Collection for Fordham University, 155p.
15.Ghahreman, A. 2006. Basic Botany. Tehran: University of Tehran Press, 492p.
16.Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., and Jarvis, A. 2005. Very high resolution interpolated climate surfaces for global land areas. Inter. J. Climatol. 25: 1965-78.
17.Hussain, H.Z., Al-Baldawy, M., andAl-Ani, R. 2014. Efficiency of borage (Anchusa italica) and french jasmin powders (Calotropis procera) in detoxification of ochiratoxin A and deoxynivalenol in poultry diet. J. Exp. Biol. Agric. Sci. 2: 5. 484-488.
18.IPCC. 2001. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, 54p.
19.IPCC. 2007. Climate change 2007: The physical science basis. Agenda. 6: 333.
20.Iverson, L.R., and McKenzie, D. 2013. Tree-species range shifts in a changing climate: detecting, modeling, assisting. Landscape ecology. 28: 879-89.
21.Keith, D.A., Akçakaya, H.R., Thuiller, W., Midgley, G.F., Pearson, R.G., Phillips, S.J., Regan, H.M., Araújo, M.B., and Rebelo, T.G. 2008. Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models. Biology Letters. 4: 560-3.
22.Khatamsaz, M. 2002. Flora of Iran (Boraginaceae), No. 39. Tehran: Research Institute of Forests and Rangelands Press, 508p.
23.King, D.A., Bachelet, D.M., and Symstad, A.J. 2013. Climate change and fire effects on a prairie–woodland ecotone: projecting species range shifts with a dynamic global vegetation model. Ecology and evolution. 3: 5076-97.
24.Lawler, J.J., White, D., Neilson, R.P., and Blaustein, A.R. 2006. Predicting climate‐induced range shifts: model differences and model reliability. Global change biology. 12: 1568-84.
25.Malmir, M., Mohamadrezapour, O., Sharifazari, S., and Ghandehari, Gh. 2016. J. Water Soil Cons. 23: 317-326.
26.Merlani, M., Barbakadze, V., Gogilashvili, L., and Amiranashvili, L. 2017. Antioxidant Activity of caffeic Acid-Derived Polymer from Anchusa italica. Bulletin of the Georgian national academy of sciences, 11: 2. 123-127.
27.Mohammadi, S., Ebrahimi, E., Shahriari Moghadam, M., and Bosso, L. 2019. Modelling current and future potential distributions of two desert jerboas under climate change in Iran, Ecological Informatics, 52: 7-13.
28.Morin, X., and Thuiller, W. 2009. Comparing niche-and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology. 90: 1301-13.
29.Peterson, A.T., Sánchez-Cordero, V., Soberón, J., Bartley, J., Buddemeier, R.W., and Navarro-Sigüenza, A.G. 2001. Effects of global climate change on geographic distributions of Mexican Cracidae. Ecological Modelling. 144: 21-30.
30.Ridgeway, G. 1999. The state of boosting. Computing Science and Statistics. 31: 172-81.
31.Sangoony, H., Vahabi, M., Tarkesh, M., Soltani, S. 2016. Range shift of Bromus tomentellus as a reaction to climate change in central zagros, Iran. Applied ecology and environmental research.
14: 85-100.
32.Schapire, R.E. 2003. The boosting approach to machine learning - an overview. MSRI Workshop on Nonlinear Estimation and Classification. Newyork: Springer. Pp: 1-23.
33.Sohrabian, E., Meftah Halaghi, M., Ghorbani, KH., Golian, S., and Zakerinia, M. 2015. Effects of climate change on runoff from rainfall (Case study: Galikesh Watershed in Golestan). J. Water Soil Cons. 22: 2. 111-125.
34.Swets, K. 1988. Measuring the accuracy of diagnostic systems. Science. 240: 1285-93.
35.Thuiller, W. 2003. BIOMOD-optimizing predictions of species distributions and projecting potential future shifts under global change. Global change biology.9: 1353-62.
36.Thuiller, W. 2007. Biodiversity: climate change and the ecologist. Nature.448: 550-2.
37.Thuiller, W., Lavorel, S., Araújo, M.B., Sykes, M.T., and Prentice, I.C. 2005. Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences of the united States of America. 102: 8245-50.
38.Williams, J.E., and Blois, J.L. 2018. Range shifts in response to past and future climate change: Can climate velocities and species’ dispersal capabilities explain variation in mammalian range shifts? J. Biogeograph. 45: 9. 2175-2189.
39.Wiens, J.A., Stralberg, D., Jongsomjit, D., Howell, C.A., and Snyder, M.A. 2009. Niches, models and climate change: assessing the assumptions and uncertainties. Proceedings of the National Academy of Sciences, 106: 729-736.
40.Xu, Z. 2014. Potential distribution of invasive alien species in the upper Ili river basin: determination and mechanism of bioclimatic variables under climate change. Environmental Earth Sciences. Pp: 1-8.
41.Zimbres, B., de Aquino, P.D., Machado, R., Silveira, L., Jácomo, A., Sollmann, R., Tôrres, N., Furtado, M., and Marinho-Filho, J. 2012. Range shifts under climate change and the role of protected areas for armadillos and anteaters. Biological Conservation. 152: 53-61.