1.Al-Snafy, A. 2014. The pharmacology of Anchusa italica and Anchusa strigosa, a review. Inter. J. Pharm. Pharmaceut. Sci. 6: 4. 7-10.
2.Allouche, O., Tsoar, A., and Kadmon, R. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43: 1223-32.
3.Anderson, R.P. 2013. A framework for using niche models to estimate impacts of climate change on species distributions. Annals of the New York Academy of Sciences. 1297: 8-28.
4.Araujo, M.B., and Guisan, A. 2006. Five (or so) challenges for species distribution modelling. J. Biogeograph. 33: 1677-88.
5.Archer, S.R., and Predick, K.I. 2008. Climate change and ecosystems of the southwestern United States. Rangelands. 30: 23-8.
6.Attorre, F., Francesconi, F., Taleb, N., Scholte, P., Saed, A., Alfo, M., and Bruno, F. 2007. Will dragonblood survive the next period of climate change? Current and future potential distribution of Dracaena cinnabari (Socotra, Yemen). Biological Conservation. 138: 430-9.
7.Aurambout, J., Finlay, K., Luck, J., and Beattie, G. 2009. A concept model to estimate the potential distribution of the Asiatic citrus psyllid in Australia under climate change-A means for assessing biosecurity risk. Ecological Modelling. 220: 2512-24.
8.Bakkenes, M., Alkemade, J., Ihle, F., Leemans, R., and Latour. J. 2002. Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Global change biology. 8: 390-407.
9.Braunisch, V., Coppes, J., Arlettaz, R., Suchant, R., Schmid, H., and Bollmann, K. 2013. Selecting from correlated climate variables: a major source of uncertainty for predicting species distributions under climate change. Ecography. 36: 971-83.
10.Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.I. 1984. Classification and regression trees. Taylor & Francis, California, 368p.
11.Collevatti, R.G., Nabout, J.C., and Diniz-Filho, J.A.F. 2011. Range shift and loss of genetic diversity under climate change in Caryocar brasiliense, a Neotropical tree species. Tree Genetics & Genomes. 7: 1237-47.
12.DE’ATH, G. 2007. Boosted trees for ecological modeling and prediction. Ecology. 88: 243-51.
13.Elith, J., Leathwick, J.R., and Hastie, T. 2008. A working guide to boosted regression trees. J. Anim. Ecol. 77: 802-13.
14.Flom, P.L. 1999. Multicollinearity diagnostics for multiple regression: A Monte Carlo study. ETD Collection for Fordham University, 155p.
15.Ghahreman, A. 2006. Basic Botany. Tehran: University of Tehran Press, 492p.
16.Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., and Jarvis, A. 2005. Very high resolution interpolated climate surfaces for global land areas. Inter. J. Climatol. 25: 1965-78.
17.Hussain, H.Z., Al-Baldawy, M., andAl-Ani, R. 2014. Efficiency of borage (Anchusa italica) and french jasmin powders (Calotropis procera) in detoxification of ochiratoxin A and deoxynivalenol in poultry diet. J. Exp. Biol. Agric. Sci. 2: 5. 484-488.
18.IPCC. 2001. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, 54p.
19.IPCC. 2007. Climate change 2007: The physical science basis. Agenda. 6: 333.
20.Iverson, L.R., and McKenzie, D. 2013. Tree-species range shifts in a changing climate: detecting, modeling, assisting. Landscape ecology. 28: 879-89.
21.Keith, D.A., Akçakaya, H.R., Thuiller, W., Midgley, G.F., Pearson, R.G., Phillips, S.J., Regan, H.M., Araújo, M.B., and Rebelo, T.G. 2008. Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models. Biology Letters. 4: 560-3.
22.Khatamsaz, M. 2002. Flora of Iran (Boraginaceae), No. 39. Tehran: Research Institute of Forests and Rangelands Press, 508p.
23.King, D.A., Bachelet, D.M., and Symstad, A.J. 2013. Climate change and fire effects on a prairie–woodland ecotone: projecting species range shifts with a dynamic global vegetation model. Ecology and evolution. 3: 5076-97.
24.Lawler, J.J., White, D., Neilson, R.P., and Blaustein, A.R. 2006. Predicting climate‐induced range shifts: model differences and model reliability. Global change biology. 12: 1568-84.
25.Malmir, M., Mohamadrezapour, O., Sharifazari, S., and Ghandehari, Gh. 2016. J. Water Soil Cons. 23: 317-326.
26.Merlani, M., Barbakadze, V., Gogilashvili, L., and Amiranashvili, L. 2017. Antioxidant Activity of caffeic Acid-Derived Polymer from Anchusa italica. Bulletin of the Georgian national academy of sciences, 11: 2. 123-127.
27.Mohammadi, S., Ebrahimi, E., Shahriari Moghadam, M., and Bosso, L. 2019. Modelling current and future potential distributions of two desert jerboas under climate change in Iran, Ecological Informatics, 52: 7-13.
28.Morin, X., and Thuiller, W. 2009. Comparing niche-and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology. 90: 1301-13.
29.Peterson, A.T., Sánchez-Cordero, V., Soberón, J., Bartley, J., Buddemeier, R.W., and Navarro-Sigüenza, A.G. 2001. Effects of global climate change on geographic distributions of Mexican Cracidae. Ecological Modelling. 144: 21-30.
30.Ridgeway, G. 1999. The state of boosting. Computing Science and Statistics. 31: 172-81.
31.Sangoony, H., Vahabi, M., Tarkesh, M., Soltani, S. 2016. Range shift of Bromus tomentellus as a reaction to climate change in central zagros, Iran. Applied ecology and environmental research.
14: 85-100.
32.Schapire, R.E. 2003. The boosting approach to machine learning - an overview. MSRI Workshop on Nonlinear Estimation and Classification. Newyork: Springer. Pp: 1-23.
33.Sohrabian, E., Meftah Halaghi, M., Ghorbani, KH., Golian, S., and Zakerinia, M. 2015. Effects of climate change on runoff from rainfall (Case study: Galikesh Watershed in Golestan). J. Water Soil Cons. 22: 2. 111-125.
34.Swets, K. 1988. Measuring the accuracy of diagnostic systems. Science. 240: 1285-93.
35.Thuiller, W. 2003. BIOMOD-optimizing predictions of species distributions and projecting potential future shifts under global change. Global change biology.9: 1353-62.
36.Thuiller, W. 2007. Biodiversity: climate change and the ecologist. Nature.448: 550-2.
37.Thuiller, W., Lavorel, S., Araújo, M.B., Sykes, M.T., and Prentice, I.C. 2005. Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences of the united States of America. 102: 8245-50.
38.Williams, J.E., and Blois, J.L. 2018. Range shifts in response to past and future climate change: Can climate velocities and species’ dispersal capabilities explain variation in mammalian range shifts? J. Biogeograph. 45: 9. 2175-2189.
39.Wiens, J.A., Stralberg, D., Jongsomjit, D., Howell, C.A., and Snyder, M.A. 2009. Niches, models and climate change: assessing the assumptions and uncertainties. Proceedings of the National Academy of Sciences, 106: 729-736.
40.Xu, Z. 2014. Potential distribution of invasive alien species in the upper Ili river basin: determination and mechanism of bioclimatic variables under climate change. Environmental Earth Sciences. Pp: 1-8.
41.Zimbres, B., de Aquino, P.D., Machado, R., Silveira, L., Jácomo, A., Sollmann, R., Tôrres, N., Furtado, M., and Marinho-Filho, J. 2012. Range shifts under climate change and the role of protected areas for armadillos and anteaters. Biological Conservation. 152: 53-61.