مقایسه تکنیک‌های شیءگرا در شناسایی اراضی شور حاشیه شرق دریاچه ارومیه با استفاده از تصاویر ماهواره لندست8 سنجنده OLI

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشگاه تبریز

2 گروه سنجش از دور و GIS، دانشگاه تبریز

چکیده

سابقه و هدف: شوری خاک یکی از مشکلات مهـم زیسـت محیطـی بـوده کـه نواحی گسترده‌ای را در بسیاری از کشورها تحت تأثیر قـرار مـی‌دهـد و این مسأله قابلیت تولید و باروری خاک را برای تولید مقرون بصرفه کاهش مـی دهـد شناسـایی و پایش مناطق شور برای کنترل رفتار تخریب زمـین و مـدیریت پایـدار آن به ویژه در نواحی نیمه خشک ضروری می باشد. گسترش روند شور شدن خاک از چالش های مهم زیست محیطی حاشیه شرق دریاچه ارومیه می‌باشد. نتایج پژوهش پژوهشگران بیانگر آن است که در زمینه ی شوری با استفاده از روش های شیءگرا کمتر کار شده و همچنین در میان انواع طبقه‌بندی کننده‌های موجود در محیط نرم افزار eCognition، به مقایسه بین الگوریتم‌های طبقه‌بندی کننده در زمینه شوری کمتر توجه شده است بنابراین ضروری است که الگوریتم های طبقه‌بندی کننده تصاویر مقایسه شده و الگوریتم‌هایی که دقت خوبی در استخراج عوارض تصویر دارند، مشخص گردند به همین منظور مطالعه حاضر سعی بر آن دارد علاوه‌ بر اینکه شوری خاک در حاشیه شرق دریاچه ارومیه را از روی تصاویر لندست استخراج نماید، الگوریتم‌های طبقه‌بندی کننده را نیز از لحاظ دقت نتایج بدست آمده ارزیابی و مقایسه نماید.
مواد و روش‌ها: منطقه مورد مطالعه بخشی از مناطق شرق حوضـه آبریــز دریاچه ارومیه است که شامل دشت های تبریز، شبستر، اسکو، آذرشهر، ، عجبشیر و بناب، ملکان وقسمتی از مراغه می باشد. و در محــدوده 37درجه و9دقیقه تا 38درجه و 11دقیقه عرض شمالی و 45درجه و 41دقیقه تا 46درجه و 17دقیقه طول شرقی در شمال غرب ایران واقع گردیده است. مساحت محدوده مورد مطالعه 6012/3847 کیلومتر مربع می‌باشد. در این تحقیق، از دو نوع داده شامل تصاویر ماهواره‌ای لندست و داده-های بدست آمده از GPS در طی عملیات میدانی استفاده گردید. ابتدا مراحل پیش پردازش تصویر از جمله تصحیح رادیومتریک جهت محاسبه شاخص‌های طیفی، برش منطقه، استک کردن باندهای تصویر در محیط نرم افزاری ENVI 5.1 صورت گرفت و پس از این اعمال، تصاویر و لایه‌های اطلاعاتی GIS شامل (اطلاعات توپوگرافی حاصل از DEM 30 متری منطقه، کلاس‌بندی خاک، شاخص پوشش گیاهی(NDVI) و سایر لایه‌های اطلاعاتی) به منظور طبقه بندی دانش پایه و اعمال الگوریتم‌های مختلف وارد محیط نرم افزار eCognation شد. در این مطالعه کارایی تکنیک فازی شیءگرا و روش نزدیک‌ترین همسایگی در استخراج نواحی شور حاشیه شرق دریاچه ارومیه بررسی شده است.

یافته‌ها: جهت دستیابی به نتایج با دقت بالا، با استفاده از الگوریتم ESP اقدام به بهینه‌سازی مقیاس سگمنت‌سازی گردید و مقیاس 170 با ضریب شکل 3/0 و ضریب فشردگی 5/0 به عنوان مقیاس مناسب انتخاب گردید. در مرحله بعد تصویر مورد نظر با استفاده از دو الگوریتم نزدیک‌ترین همسایگی و فازی شیءگرا مورد پردازش قرار گرفت. در این پژوهش جهت انجام طبقه بندی نزدیک‌ترین همسایگی، ابتدا فواصل بین نمونه‌های تعلیمی با استفاده از الگوریتم FSO بهینه گردید. و برای تصویر مورد مطالعه هجدهمین بعد با فاصله تفکیک-پذیری 52/2 به‌عنوان بهترین بعد جهت جداسازی کلاس‌های موردنظر مشخص گردید. بررسی نتایج به دست آمده نشان می‌دهد که هر دو روش با کمی تفاوت نتایج نسبتاً مشابهی را به دست می‌دهند. روش نزدیک‌ترین همسایگی اراضی غیر شور را بیشتر از روش فازی شیءگرا برآورد نموده است و این می‌تواند به دلیل وجود پیکسل‌های آمیخته باشد.
نتبجه‌گیری: بررسی نتایج به دست آمده نشان داد که روش فازی شیءگرا به دلیل استفاده از توابع درجه عضویت دارای دقت کلی 94/0 و ضریب کاپای 91/0 بوده و در استخراج شوره‌زارهای حاشیه شرق دریاچه نسبت به الگوریتم نزدیک‌ترین همسایگی برتری دارد. همچنین مشخص گردید که شاخص روشنایی به عنوان مؤثرترین شاخص در شناسایی و تفکیک اراضی شور از نواحی غیر شور می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Identifying and Monitoring Soil Salinization in the Eastern Part of Urmia lake Together With Comparing Capability of Object Based Image Analysis Techniques

نویسندگان [English]

  • Keyvan Mohammadzadeh 1
  • Bakhtiar Feizizadeh 2
1 Tabriz University
2 Department of Remote Sensing and GIS, University of Tabriz
چکیده [English]

Background and Objectives:
Soil salinity is one of the major environmental problems affecting vast areas in many countries and this problem reduces the ability to produce and fertilize the soil for cost-effective production. Identification and monitoring of saline areas is necessary for controlling land degradation behavior and its sustainable management, especially in semi-arid areas. Expansion of the process of soil salinization is one of the important environmental challenges of the eastern margin of Urmia Lake. The research results of the researcher indicate that less work has been done in this salinity field by means of object-oriented methods. As well as among the various types of classifiers in the eCognition software environment, comparisons between salient classification algorithms are less significant. Therefore, it is necessary to compare the images classification algorithms and algorithms that have a good accuracy in extracting image complications are identified.
Materials and Methods:
The study area is part of the eastern catchment of Urmia Lake which includes the plains of Tabriz, Shabestar, Oskuo, Azarshahr, Ajbashir and Bonab, Malekan and part of Maragheh. And it is located in the range of 37 degrees, 9 minutes to 38 degrees, 11 minutes north latitude and 45 degrees, 41 minutes to 46 degrees and 17 minutes east longitude in the northwest of Iran. The study area is 3847 square kilometers. For this purpose, two types of data including satellite images and GPS data obtained from field operation were employed. First, the stages of image preprocessing, including radiometric correction, to calculate the spectral indices, subset, and image bands stack in the ENVI 5.1 software were performed. After performing the preprocessing stages, the images and GIS data include (Topographic data from DEM 30m of area, soil classification, vegetation index (NDVI) and other information layers) were imported to the eCognition software for object based image processing and to classify knowledge based classification based on different algorithms. In this study, the effectiveness of the object based fuzzy technique and the nearest neighbor approach in the extraction of saline areas in the eastern of Urmia Lake were also investigated as part of methodology.
Results:
In order to achieve high accuracy results, using the ESP algorithm, the segmentation scale was optimized. By predicting the appropriate scale for creating image units using the ESP algorithm, the scale 170 with coefficients of shape 0.2 and compression 0.5 was selected as the appropriate scale for extraction of image symptoms. Accordingly, to classify the nearest neighbor classification, at the first, the intervals between educational samples were optimized using FSO algorithm. And for the image of the study, the eighteenth dimension with a separation distance 2.52 was identified as the best dimension for the separation of the desired classes. The results indicate that both methods with small difference have relatively similar results. However, the nearest neighbor approach has been estimated non-saline lands more than the object based fuzzy method. Based on our statement it could be due to the presence of mixed pixels
Conclusion:
The results showed that the fuzzy object-oriented method, due to the use of membership degree functions, has overall accuracy of 0.94 and a kappa coefficient of 0.91, and it is superior to the nearest neighboring algorithm in extraction of eastern lake margins. It was also found that the brightness index is the most effective indicator in identifying and distinguishing salty lands from non-saline areas.

کلیدواژه‌ها [English]

  • Saline Land
  • Object Oriented Fuzzy
  • Nearest Neighbor
  • ESP
  • Eastern of Urmia Lake
1.Allbed, A., Kumar, L., and Aldakheel, Y. Y. 2014. Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region. Geoderma, 1: 230. 1-8.
2.Baatz, M., Benz, U., Dehghani, S., Heynen, M., Höltje, A., Hofmann, P., Lingenfelder, I., Mimler, M., Sohlbach, M., Weber, M., and Willhauck, G. 2004. eCognition Professional User Guide 4. Published by:Trimble Germany GmbH, Arnulfstrasse 126, D-80636 Munich, Germany. 270p.
3.Babaei, R. 2017. Evaluation of land use change using satellite images processing (Case Study: Moghan Plain). Master's thesis. Remote sensing and GIS Field in soil and water studies. Tabriz University. 130p. (In Persian)
4.Bertani, T.C., Novack, T., Hayakawa, E.H., and Zani, H. 2010. Detection of Saline and Non-Saline Lakes on the Pantanal of Nhecolândia (Brazil) Using Object-Based Image Analysis. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII-4/C7.32-38.
5.Blaschke, T., and Strobl, J. 2001.What’s wrong with pixels? Somerecent developments interfacing remotesensing and GIS. GIS-Zeitschrift für Geoinformations system. 14: 6. 12-17.
6.Campbell, J.B., and Wynne, R.H. 2011. Introduction to remote sensing. Fifth edition, Guilford Press. 667p. 7.
7.Dashtakian, K., Pakparvar, M., and Abdollahi, J. 2008. Study of Soil Salinity Mapping Methods Using Landsat Satellite Data in Marvast Region. Res.J. Iran Grass. Des. 15: 2. 139-157.(In Persian)   
8.ECognition. 2012. Ecognition User Guide and Reference book. http://www.Definiens-imaging.com (Munich, Germany: Definiens Imaging) Published by: Trimble Germany GmbH, Arnulfstrasse 126, D-80636 Munich, Germany. 441p.
9.Farifteh, J., Van der Meer, F.,Atzberger, C., and Carranza, E.J.M. 2007. Quantitative analysis of salt-affected soil reflectance spectra: A comparison of two adaptive methods (PLSR and ANN). J. Rem. Sens. Environ. 110: 1. 59-78.
10.Farifteh, J., Farshad, A., and George, R.J. 2006. Assessing salt-affectedsoil using remote sensing, solute modelling, and geophysics. Geoderma 130: 4. 191-206.
11.Feizizadeh, B., and Hossein, H. 2008. Comparison of object based and pixel based methods and effective parameters in coverage / Land Use Classification in West Azarbaijan Province. Natural Geography Research, Spring number, 71: 42. 73-84. (In Persian)    
12.Hall, O., Hay, G.J., Bouchard, A., and Marceau, D.J. 2004. Detecting dominant landscape objects through multiple scales: an integration of object-specific methods and watershed segmentation. Landscape Ecology, 19: 1. 59-76. 
13.Hatafi, A.A., Karimi Ahmadabad, M., Ekhtesasi, M.R., and Payedar Ardakani, A. 2017. Evaluation of modeling methods and supervised classification for mapping soil salinity using ASTER and ETM images. J. Water Soil Cons. 23: 5. 123-140. (In Persian)
14.Hoffmann, A., and Van der Vegt, J.W. 2001. New Sensor systems and new Classification .Methods: Laser- and Digital Camera-data meet object-oriented strategies. GIS – Zeitschrift für Geoinformationssysteme 6: 01. 18-23.
15.James, D., Hurad Daniel, L., Civco Martha, S., Gilmore Emily, H., and Wilson. 2006. Tidal Wetland Classification From Landsat Imagery Using An Integrated Pixel-based and Object-based Classification Approach. ASPRS 2006 Annual Conference Reno, Nevada. May 1-5. 11p.
16.Karam, A., Kiyani, T., Dadrasi Sbzvari, A., and Davarzani, Z. 2018. Estimation of Soil Salinity Using Remote Sensing and Spatial Statistics in Sabzevar. Quantitative Geomorphology Research, Seventh Year, No. 4: 31-53. (In Persian)
17.Khademi, F., Pirokharati, H., and Sajjad, Sh. 2014. Study of the trend of increasing saline soils around Urmia lake using GIS and RS. Earth Sciences, 24: 94. 93-98. (In Persian)
18.Lees, B. 2006. The spatial analysis of spectral data: Extracting the neglected data. Applied GIS, 2: 2. 14-1.   
19.Lemma, H., Frankl, A., Poesen,J., Adgo, E., and Nyssen, J.2017. Classifying land cover from an object-oriented approach-applied to LANDSAT 8 at the regional scale of the Lake Tana Basin (Ethiopia). 19thEGU General Assembly, EGU2017, proceedings from the conference held 23-28 April, 2017 in Vienna, Austria.p. 3526.
20.Matinfar, H.R., Sarmadian, F., and Kazem, A. 2007. Identification of saline soils in dry area (Kashan) based on digital processing of IRS satellitedata and field studies J. Water Water.
2: 3. 99-111. (In Persian)
21.Metternicht, G.I. 2001. Assessing temporal and spatial changes of salinity using fuzzy logic, remote sensing and GIS. Foundations of an expert system. Ecological Modelling, 144: 3. 163-179.
22.Moharami, M. 2017. Modeling the effects of the Urmia Lake on the eastern coastal villages by object-oriented satellite imagery, Master's thesis, Remote Sensing and GIS, University of Tabriz. 145p. (In Persian)
23.Nguyen, K.A., Liou, Y.A., Tran, H.P., Hoang, P.P., and Nguyen, T.H. 2020. Soil salinity assessment by usingnear-infrared channel and Vegetation Soil Salinity Index derived from Landsat 8 OLI data: a case study in the Tra Vinh Province, Mekong Delta, Vietnam. Progress in Earth and Planetary Science, 7: 1. 1-16.   
24.Schiewe, J., Tufte, L., and Ehlers,M. 2001. Potential and problems of multi-scale segmentation methods in remote sensing. GIS - Zeitschrift für Geoinformationssysteme 6: 01. 34-39.
25.Schiewe, J. 2002. Segmentation of high-resolution remotely sensed data-concepts, applications and problems. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 34: 4. 380-385.             
26.Shrivastava, P., and Kumar, R. 2015. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools forits alleviation. Saudi J. Biol. Sci.22: 2. 123-131.  
27.Stals, J.P. 2007. Mapping potential soil salinization using rule based object-oriented image analysis PHD Thesis (Geography and Environmental Studies). University of Stellenbosch. 96p. 
28.Stocking, M. 1995. Soil erosion andland degradation. Environmentalscience for environmental management, Pp: 223-242.     
29.Tajgardan, T., Ayoubi, Sh., Shataii, Sh., and Khormali, F. 2009. Mapping soil surface salinity using remote sensing data of ETM+ (Case study: North of Agh Ghala, Golestan Province). J. Water Soil Cons. 16: 2. 1-18. (In Persian)
30.Volschenk, T., Fey, M.V., and Zietsman, H.L. 2005. Situation Analysis of Problems for Water Quality Management in the Lower Orange River Region with Special Reference to the Contribution of the Foothills to Salinization. Final report to the Water Research Commission and Northern Cape Department of Agriculture and Land Reform. 170p.      
31.Yan, G. 2003. Pixel based and object oriented image for coal fire research (Doctoral dissertation, Thesis (MSc) International institute for geo -information science and earth and observation Enschede. ITC, Netherlands). 93p.
32.Zhang, Y., and Maxwell, T. 2006.A fuzzy logic approach to supervised segmentation for object-oriented classification. In ASPRS 2006 Annual Conference Reno, Nevada May 1-5. 11p.