ارزیابی روش برآورد عدم‌قطعیت درست‌نمایی تعمیم‌یافته در مدل‌های HyMod و HBV (مطالعه موردی: حوضه چهل‌چای استان گلستان)

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

چکیده

سابقه و هدف: یکی از مهم‌ترین مشکلات مسائل بدطرح معکوس در بیش‌برازش مدل با داده‌های مشاهداتی، در بهینه‌سازی پارامترها است که با این عمل، پارامترهایی که برازش کمتری با داده‌های مشاهداتی دارند و ممکن بود با داده‌های غیر از صحت‌سنجی، نتیجه‌ای حتی بهتر از جواب بهینه نشان می‌دادند، حذف می‌شوند. این پارامترها، نباید حذف شوند بلکه باید به نحوی در نظر گرفته شوند. درروش برآورد عدم‌قطعیت درست‌نمایی تعمیم‌یافته (GLUE) این دیدگاه، به‌کار رفته است.
مواد و روش‌ها: در این مطالعه، از روش GLUE در مدل‌سازی بارش- رواناب استفاده شد که در آن، با استفاده از یک تابع درست‌نمایی نامرسوم و فرض یک مقدار آستانه‌ای از آن، مجموعه‌ای از پارامترهای رفتاری برای تولید باندهای عدم‌قطعیت پیش‌بینی در نظر گرفته شده‌اند. روش GLUE، جهت برآورد عدم‌قطعیت در مدل‌سازی بارش- رواناب حوضه آبریز چهل‌چای در استان گلستان مورد استفاده واقع ‌شد. برای این کار، از دو مدل یکپارچه HyMod و HBV و شش تابع درست‌نمایی شامل واریانس معکوس، نش-ساتکلیف، کلینگ-گوپتا، ویتل ، نرمال، نرمال با واریانس ناهمسان بهره گرفته شد.
یافته‌ها: برای ارزیابی روش GLUE، مناسب‌ترین توابع درست‌نمایی انتخاب ‌شده و تأثیر عوامل مؤثر بر آن مورد تحلیل قرار گرفت. برای حوضه موردمطالعه، از بین شش تابع درست‌نمایی ارزیابی‌شده، توابع واریانس معکوس، کلینگ گوپتا و نرمال به‌دلیل نتیجه بهتر انتخاب شدند. آستانه جداسازی پارامترها نیز مورد تحلیل حساسیت قرار گرفت و 5 درصد تعداد کل شبیه‌سازی‌ها مناسب تشخیص داده شد. نتایج نشان داد که با افزایش پارامتر شکل، وزن بیشتر به جواب‌هایی تعلق می‌گیرد که دارای برازش بهتری هستند؛ بنابراین روش GLUE مشابه یک روش بهینه‌سازی عمل می‌کند. بررسی عدم‌قطعیت پارامترهای دو مدل نشان داد اکثر پارامترها همبستگی کمی با یکدیگر دارند که می‌توان نتیجه گرفت که پارامترها خوب تعریف‌شده‌اند، اما به خاطر ضریب تغییرات نسبتاً بالای آن‌ها، تشخیص‌‌پذیری آن‌ها پایین است. باندهای عدم‌قطعیت در مدل HyMod حدود 62 درصد و در مدل HBV حدود 55 درصد از داده‌های مشاهداتی را (در دوره‌های صحت‌سنجی و واسنجی) پوشش دادند بازه‌‌‌های پیش‌بینی، در جریان‌های پایه بیشترین عرض را داشتند.
نتیجه‌گیری: با توجه به نتایج، روش GLUE، نسبت به تابع درست‌نمایی مورداستفاده، آستانه جداسازی پارامترهای قابل‌قبول و نوع مدل، حساس بود. برای حوضه چهل‌چای، بهترین تابع درست‌نمایی، تابع کلینگ-گوپتا، بهترین آستانه جداسازی، برابر 5 درصد تعداد کل شبیه‌سازی‌ها بوده و از بین دو مدل مورد بررسی، مدل HyMod نسبت به مدل HBV، نتایج نسبتاً بهتری داشت. همچنین عدم‌قطعیت پارامترها در این روش، به این دلیل که کل عدم‌قطعیت را در پارامترها خلاصه می‌کند، بالاست. از مزایای روش می‌توان به اجتناب نسبی آن از بیش‌برازش و سادگی آن اشاره کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Appraisal of the Generalized Likelihood Uncertainty Estimation in HyMod and HBV models (Case study: Chehelchai catchment in Golestan province)

نویسندگان [English]

  • MohamadAli Ghorbani
  • Yaghob Dinpashoh
  • MohamadMehdi Moayeri
Department of Water Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
چکیده [English]

Background and objectives: In hydrology, the frequent ill-posed Inverse problems suffer from overfitting which leads to omitting the model parameters with less outputs fitness to observations. These parameters might have better fitting during other periods. They should not be rejected but should be considered in some way. Generalized Likelihood Uncertainty Estimation (GLUE) is one solution.
Materials and methods: In this study, GLUE has been used for uncertainty estimation of two rainfall-runoff model. In the method, an informal likelihood function with a subjective threshold is used for selecting a set of behavioral parameters and then predictive uncertainty bounds are estimated from these parameter outputs. The GLUE is applied for ChehelChai Catchment, located in North east of Iran, Golestan province. HyMod (HYdrologic MODel) and HBV (Hydrologiska Byråns Vattenbalansavdelning) lumped models were used for catchment modeling with six likelihood functions including Inverse Variance (IV), Nash-Sutcliff (NSE), Kling-Gupta (KGE), Whittle, Normal with homoscedastic error variance and Normal with heteroscedastic error variance.
Results: For appraisal of the GLUE method, the best likelihood function was selected and sensitivity analysis of different factors on the method was done. For the case study catchment, Inverse Variance (IV), Kling-Gupta (KGE) and Normal with homoscedastic error variance likelihood functions, regarding to their relative answers, was selected for subsequent assessments. The sensitivity analysis of the partitioning threshold between behavioral and non-behavioral parameters showed the 5 percent of simulations are suitable. Increasing shape factor devotes more weight to parameters with better goodness of fit and makes the GLUE to act more like an optimization method. Parameter uncertainty analysis showed low correlation among parameters which implies that both model parameters are well defined, but high coefficient of variation implies that identifiability of the parameters are low. Uncertainty bounds calculated by applying the GLUE method covered 62 percent of observation foe HyMod model and 55 percent for HBV model. For base-flows, the prediction bounds were widest among other components of hydrograph.
Conclusion: Considering the results, it can be indicated that the GLUE method is sensitive to likelihood function, the partitioning threshold between behavioral and non-behavioral parameters and also the assessed model because by changing from case to case, different results could be achieved. For Chehelchai catchment, the Kling-Gupta likelihood function was the best among other assessed likelihood functions, the best threshold was 5 percent of number of simulations and among applied models, HyMod had better results compared to HBV model. Parameter uncertainty estimated by the GLUE method is high, because total uncertainty of different elements of model is projected to parameter uncertainty. Simplicity and relatively preventing from overfitting are some advantages of the method.

کلیدواژه‌ها [English]

  • : Generalized Likelihood Uncertainty Estimation (GLUE)
  • Likelihood function
  • HyMod and HBV lumped models
1.Aghakouchak, A., and Habib, E. 2010. Application of a Conceptual Hydrologic Model in Teaching Hydrologic Processes. Inter. J. Engin. Educ. 26: 4. 1-11.
2.Beven, K. 1993. Prophecy, reality and uncertainty in distributed hydrological modelling. Advances in Water Resources, 16: 1. 41-51.
3.Beven, K. 2006. A manifesto for the equifinality thesis. In Journal of Hydrology. 320: 18-36.
4.Beven, K., and Binley, A. 1992. The future of distributed models: Model calibration and uncertainty prediction. Hydrological Processes, 6: 3. 279-298.
5.Beven, K., and Binley, A. 2014.GLUE: 20 years on. Hydrological Processes. 28: 24. 5897-5918.
6.Beven, K., and Freer J. 2001. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J. Hydrol. 249: 1-4. 11-29.
7.Beven, K.J. 2012. Rainfall-runoff modelling: the primer. Rainfall-Runoff Modelling: The Primer: Second Edition, Wiley-Blackwell, Pp: 18-19.
8.Freer, J., Beven, K., and Ambroise, B. 1996. Bayesian estimation of uncertainty in runoff prediction and the value ofdata: An application of the GLUE approach. Water Resources Research,32: 7. 2161-2173.
9.Gupta, H.V., Kling, H., Yilmaz, K.K., and Martinez, G.F. 2009. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 377: 1-2. 80-91.
10.Hamraz, B., Akbarpour, A., and Pourreza-Bilondi, M. 2016. Assessment of parameter uncertainty of MODFLOW model using GLUE method (Case study: Birjand plain). J. Water Soil Cons.22: 6. 61-79. (In Persian)
11.Jafarzadeh, M., Rouhani, H., Salmani, H., and Fathabadi, A. 2016. Reducing uncertainty in a semi distributed hydrological modeling within theGLUE framework. J. Water Soil Cons. 23: 1. 83-100. (In Persian)
12.Kuczera, G., Kavetski, D., Franks, S., and Thyer, M. 2006. Towards a Bayesian total error analysis of conceptual rainfall-runoff models: Characterizing model error usingstorm-dependent parameters. J. Hydrol. 331: 1-2. 161-177.
13.Mantovan, P., and Todini, E. 2006. Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology. J. Hydrol. 330: 1-2. 368-381.
14.Mirzaei, M., Huang, Y.F., El-Shafie, A., and Shatirah, A. 2015. Application of the generalized likelihood uncertainty estimation (GLUE) approach for assessing uncertainty in hydrological models: a review. Stochastic Environmental Research and Risk Assessment. 29: 5.
15.Montanari, A. 2005. Large sample behaviors of the generalized likelihood uncertainty estimation (GLUE) in assessing the uncertainty of rainfall-runoff simulations. Water Resources Research, 41: 8. 1-13.
16.Moore, R.J. 2007. The PDM rainfall-runoff model. Hydrology and Earth System Sciences. 11: 1. 483-499.
17.Pourreza-Bilondi, M., Akhoond Ali, A., Ghahraman, B., and Telvari, A. 2014. Uncertainty Analysis a single event distributed rainfall-runoff model with using two different Markov Chain Monte Carlo methods. J. Water Soil Cons. 21: 5. 1-26. (In Persian)
18.Ratto, M., Tarantola, S., and Saltelli, A. 2001. Sensitivity analysis in model calibration: GSA-GLUE approach. Computer Physics Communications. 136: 3. 212-224.
19.Sloto, R., and Crouse, M.Y. 1996. Hysep: a computer program for streamflow hydrograph separation and analysis. U.S. Geological SurveyWater-Resources Investigations Report. 96-4040, 54.
20.Stedinger, J.R., Vogel, R.M., Lee, S.U., and Batchelder, R. 2008. Appraisal of the generalized likelihood uncertainty estimation (GLUE) method. Water Resources Research. 44: 12. 1-17.
21.Vrugt, J.A., Diks, C.G.H., Gupta, H.V., Bouten, W., and Verstraten, J.M. 2005. Improved treatment of uncertainty in hydrologic modeling: Combining the strenghts of global optimization and data assimilation. Water Resources Research. 41: 1. W01017.
22.Whittle, P. 1953. Estimation and information in stationary time series. Arkiv För Matematik. 2: 5. 423-434.
23.Xiong, L., Wan, M., Wei, X., and Connor, K.M. 2009. Indices for assessing the prediction bounds of hydrological models and application by generalized likelihood uncertainty estimation. Hydrol. Sci. J. 54: 5. 852-871.