1.Abdolali, A., Guo, W.S., Ngo, H.H., Chen, S.S., Nguyen, N.C., and Tung, K.L. 2014. Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: a critical review. Bioresource technology. 160: 57-66.
2.Agrafioti, E., Kalderis, D., and Diamadopoulos, E. 2014. Ca and Fe modified biochars as adsorbents of arsenic and chromium in aqueous solutions. J. Environ. Manage. 146: 444-450.
3.Ahmed, M.B., Zhou, J.L., Ngo, H.H., Guo, W., Johir, M.A.H., and Belhaj, D. 2017. Competitive sorption affinity of sulfonamides and chloramphenicol antibiotics toward functionalized biochar for water and wastewater treatment. Bioresource technology. 238: 306-312.
4.Babaee, Y., Mulligan, C.N., and Rahaman, M.S. 2017. Stabilization of Fe/Cu nanoparticles by starch and efficiency of arsenic adsorption from aqueous solutions. Environmental Earth Sciences. 76: 19. 650.
5.Camacho, L.M., Ponnusamy, S., Campos, I., Davis, T.A., and Deng, S. 2015. Evaluation of novel modified activated alumina as adsorbent for arsenic removal. In Handbook of Arsenic Toxicology. Academic Press. Pp: 121-136.
6.Chaudhry, S.A., Khan, T.A., and Ali, I. 2017. Zirconium oxide-coated sand based batch and column adsorptive removal of arsenic from water: Isotherm, kinetic and thermodynamic studies. Egypt. J. Petroleum. 26: 2. 553-563.
7.Chaudhry, S.A., Zaidi, Z., and Siddiqui, S.I. 2017. Isotherm, kinetic and thermodynamics of arsenic adsorption onto Iron-Zirconium Binary Oxide-Coated Sand (IZBOCS): Modelling and process optimization. J. Mol. Liquid. 229: 230-240.
8.Cheng, Y., Zhang, S., Huang, T., and Li, Y. 2019. Arsenite removal from groundwater by iron–manganese oxides filter media: Behavior and mechanism. Water Environment Research. 91: 6. 536-545.
9.Chitsazan, M., Dorraninejad, M.S., Zarasvandi, A., and Mirzaii, S.Y. 2009. Occurrence, distribution and source of arsenic in deep groundwater wells in Maydavood area, southwestern Iran. Environmental geology. 58: 4. 727-737.
10.Faghani, H.A., and Heshmati Jannat Magham, A. 2019. Study of Phenol Red pigment removal from aqueous solution using Magnetite Nanoparticle. J. Water Soil Cons. 26: 3. 109-125. (In Persian)
11.Foo, K.Y., and Hameed, B.H. 2010. Insights into the modeling of adsorption isotherm systems. Chem. Engin. J. 156: 1. 2-10.
12.Freitas, E.T., Stroppa, D.G., Montoro, L.A., de Mello, J.W., Gasparon, M., and Ciminelli, V.S. 2016. Arsenic entrapment by nanocrystals of Al-magnetite: the role of Al in crystal growth and as retention. Chemosphere. 158: 91-99.
13.Gupta, V.K., Gupta, M., and Sharma, S. 2001. Process development for the removal of lead and chromium from aqueous solutions using red mud-an aluminium industry waste. Water research. 35: 5. 1125-1134.
14.Hamidian, A.H., Razeghi, N., Zhang, Y., and Yang, M. 2019. Spatial distribution of arsenic in groundwater of Iran, a review. J. Geochem. Exp. 201: 88-98
15.Han, B., Runnells, T., Zimbron, J., and Wickramasinghe R. 2002. Arsenic removal from drinking water by flocculation and microfiltration. Desalination. 145:1. 293-298.
16.He, R., Peng, Z., Lyu, H., Huang, H., Nan, Q., and Tang, J. 2018. Synthesis and characterization of an iron-impregnated biochar for aqueous arsenic removal. Science of the Total Environment. 612: 1177-1186.
17.Hu, X., Ding, Z., Zimmerman, A.R., Wang, S., and Gao, B. 2015. Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. water research.
68: 206-216.
18.IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, World Health Organization and International Agency for Research on Cancer, 2004. Some drinking-water disinfectants and contaminants, including arsenic. Vol. 84.
19.Inyang, M.I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., Pullammanappallil, P., Ok, Y.S., and Cao, X. 2016. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology. 46: 4. 406-433.
20.Jain, M., Garg, V.K., and Kadirvelu, K. 2009. Chromium (VI) removal from aqueous system using Helianthus annuus (sunflower) stem waste. J. Hazard. Mater. 162: 1. 365-372.
21.Kalaruban, M., Loganathan, P., Nguyen, T.V., Nur, T., Johir, M.A.H., Nguyen, T.H., Trinh, M.V., and Vigneswaran, S. 2019. Iron-impregnated granular activated carbon for arsenic removal: Application to practical column filters. J. Environ. Manage. 239: 235-243.
22.Khorasanipour, M., and Esmaeilzadeh, E. 2015. Geo-genic arsenic contamination in the Kerman Cenozoic Magmatic Arc, Kerman, Iran: Implications for the source identification and regional analysis. Applied Geochemistry. 63: 610-622.
23.Komkiene, J., and Baltrenaite, E. 2016. Biochar as adsorbent for removal of heavy metal ions [Cadmium (II), Copper (II), Lead (II), Zinc (II)] from aqueous phase. Intern. J. Environ. Sci. Technol. 13: 2. 471-482.
24.Kwok, K.C., Koong, L.F., Al Ansari, T., and McKay, G. 2018. Adsorption/ desorption of arsenite and arsenate on chitosan and nanochitosan. Environmental Science and Pollution Research.
25: 15. 14734-14742.
25.Lata, S., and Samadder, S.R. 2016. Removal of arsenic from water using nano-adsorbents and challenges: a review. J. Environ. Manage. 166: 387-406.
26.Li, R., Wang, J.J., Gaston, L.A., Zhou, B., Li, M., Xiao, R., Wang, Q., Zhang, Z., Huang, H., Liang, W., and Huang, H. 2018. An overview of carbothermal synthesis of metal–biochar composites for the removal of oxyanion contaminants from aqueous solution. Carbon. 129: 674-687.
27.Lin, L., Qiu, W., Wang, D., Huang, Q., Song, Z., and Chau, H.W. 2017. Arsenic removal in aqueous solution by a novel Fe-Mn modified biochar composite: characterization and mechanism. Ecotoxicology and environmental safety. 144: 514-521.
28.Litter M.I., Morgada M.E., and Bundschuh J. 2010. Possible treatments for arsenic removal in Latin American waters for human consumption. Environmental Pollution. 158: 5. 1105-1118.
29.Mandal, P. 2017. An insight of environmental contamination of arsenic on animal health. Emerging Contaminants. 3: 1. 17-22.
30.Mansouri, T., Golchin, A., Babaakbari Sari, M., and Sh. Ahmadi. 2017. Reduction of arsenic mobilization in soil by application of hematite nanoparticles and acrylic polymers. J. Water Soil Cons. 23: 6. 79-99. (In Persian)
31.Matschullat, J. 2000. Arsenic in the geosphere-a review. Science of the Total Environment. 249: 1-3. 297-312.
32.Mosaferi, M., Yunesian, M., Dastgiri, S., Mesdaghinia, A., and Esmailnasab, N. 2008. Prevalence of skin lesions and exposure to arsenic in drinking water in Iran. Science of the total environment. 390: 1. 69-76.
33.Navas-Acien, A., Silbergeld, E.K., Streeter, R.A., Clark, J.M., Burke, T.A., and Guallar, E. 2005. Arsenic exposure and type 2 diabetes: a systematic review of the experimental and epidemiologic evidence. Environmental health perspectives. 114: 5. 641-648.
34.Nriagu, J.O., Bhattacharya, P., Mukherjee, A.B., Bundschuh, J., Zevenhoven, R., and Loeppert, R.H. 2007. Arsenic in soil and groundwater: an overview. Trace Metals and other Contaminants in the Environment. 9: 3-60.
35.Özcan, A.S., Erdem, B., and Özcan, A. 2005. Adsorption of Acid Blue 193 from aqueous solutions onto BTMA-bentonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 266: 1-3. 73-81.
36.Peng, L., Liu, Y., Sun, J., Wang, D., Dai, X., and Ni, B.J. 2017. Enhancing immobilization of arsenic in groundwater: A model-based evaluation. J. Cleaner Prod. 166: 449-457.
37.Ravenscroft, P., Brammer, H., and Richards, K. 2009. Arsenic pollution: a global synthesis. John Wiley & Sons. 28: 588.
38.Ren, Z., Zhang, G., and Chen, J.P. 2011. Adsorptive removal of arsenic from water by an iron–zirconium binary oxide adsorbent. J. Coll. Inter. Sci. 358: 1. 230-237.
39.Rosales, E., Meijide, J., Pazos, M., and Sanromán, M.A. 2017. Challenges and recent advances in biochar as low-cost biosorbent: from batch assays to continuous-flow systems. Bioresource technology. 246: 176-192.
40.Sarkar, A., and Paul, B. 2016. The global menace of arsenic and its conventional remediation-A critical review. Chemosphere. 158: 37-49.
41.Shahid, M., Niazi, N.K., Dumat, C., Naidu, R., Khalid, S., Rahman, M.M., and Bibi, I. 2018. A meta-analysis of the distribution, sources and health risks of arsenic-contaminated groundwater
in Pakistan. Environmental pollution. 242: 307-319.
42.Singh, R., Singh, S., Parihar, P., Singh, V.P., and Prasad, S.M. 2015. Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicology and environmental safety. 112: 247-270.
43.Smith, A.H., and Steinmaus, C.M. 2009. Health effects of arsenic and chromium in drinking water: recent human findings. Annual review of public health. 30: 107-122.
44.Song, X., Zhou, L., Zhang, Y., Chen, P., and Yang, Z. 2019. A novel cactus-like Fe3O4/Halloysite nanocomposite for arsenite and arsenate removal from water. J. Cleaner Prod. 224: 573-582.
45.Suazo-Hernández, J., Sepúlveda, P., Manquián-Cerda, K., Ramírez-Tagle, R., Rubio, M.A., Bolan, N., Sarkar, B., and Arancibia-Miranda, N. 2019. Synthesis and characterization of zeolite-based composites functionalized with nanoscale zero-valent iron for removing arsenic in the presence of selenium from water. J. Hazard. Mater. 373: 810-819.
46.Tabaraki, R., and Heidarizadi, E. 2018. Simultaneous biosorption of Arsenic (III) and Arsenic (V): Application of multiple response optimizations. Ecotoxicology and environmental safety. 166: 35-41.
47.Thavamani, S.S., and Rajkumar, R. 2013. Removal of Cr (VI), Cu (II), Pb (II) and Ni (II) from aqueous solutions by adsorption on alumina. Res. J. Chem. Sci. 3: 8. 44-48.
48.Van Vinh, N., Zafar, M., Behera, S.K., and Park, H.S. 2015. Arsenic (III) removal from aqueous solution by raw and zinc-loaded pine cone biochar: equilibrium, kinetics and thermodynamics studies. Inter. J. Environ. Sci. Technol. 12: 4. 1283-1294.
49.Wang, S., Gao, B., Li, Y., Creamer, A.E., and He, F. 2017. Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite: batch and continuous flow tests. J. Hazard. Mater. 322: 172-181.
50.Wang, S., Gao, B., Li, Y., Wan, Y., and Creamer, A.E. 2015. Sorption of arsenate onto magnetic iron–manganese (Fe-Mn) biochar composites. RSC Advances. 5: 83. 67971-67978.
51.Wang, S., Gao, B., Li, Y., Zimmerman, A.R., and Cao, X. 2016. Sorption of arsenic onto Ni/Fe layered double hydroxide (LDH)-biochar composites. RSC Advances. 6: 22. 17792-17799.
52.Wickramasinghe, S.R., Han, B., Zimbron, J., Shen, Z., and Karim, M.N. 2004. Arsenic removal by coagulation and filtration: comparison of groundwater from the United States and Bangladesh. Desalination. 169: 3. 231-244.
53.Xia, D., Tan, F., Zhang, C., Jiang, X., Chen, Z., Li, H., Zheng, Y., Li, Q., and Wang, Y. 2016. ZnCl2-activated biochar from biogas residue facilitates aqueous As (III) removal. Applied Surface Science. 377: 361-369.
54.Yoder, J., Galinato, S., Granatstein, D., and Garcia-Perez, M. 2011. Economic tradeoff between biochar and bio-oil production via pyrolysis. Biomass and Bioenergy. 35: 5. 1851-1862.
55.Yu, Z., Zhou, L., Huang, Y., Song, Z., and Qiu, W. 2015. Effects of a manganese oxide-modified biochar composite on adsorption of arsenic in red soil. J. Environ. Manage. 163: 155-162.
56.Zhou, Q., Teng, Y., and Liu, Y. 2017. A study on soil-environmental quality criteria and standards of arsenic. Applied geochemistry. 77: 158-166.