کاربرد روش GLUEدر برآورد عدم قطعیت پارامترهای آلفا و n در منحنی رطوبتی خاک

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 هیأت علمی دانشگاه شهید باهنر کرمان

2 گروه علوم خاک، دانشگاه شهید باهنر کرمان، ایران

3 دانشگاه شهید باهنر کرمان

4 عضو هیات علمی دانشگاه بیرجند

5 استادیار دانشگاه بیرجند

چکیده

سابقه و هدف: منحنی رطوبتی خاک یک مفهوم کلیدی در فرآیند مدل‌سازی مطالعات فیزیکی و هیدرولوژی خاک است که نقش تعیین کننده‌ای در مدیریت آب و خاک دارد. از طرفی، دقت مدل‌های مورد استفاده در توصیف منحنی رطوبتی خاک متاثر از روند تغییرات پارامترهای آن است. تجزیه و تحلیل میزان عدم‌قطعیت پارامترهای هیدرولیکی منحنی رطوبتی خاک در فرآیند مدل‌سازی، تعیین پارامترهای ورودی مدل‌ها و ارزیابی میزان عملکرد مدل‌ها نقش بسزائی دارد. از این‌رو هدف از این مطالعه ارزیابی کاربرد روش شبیه‌سازی GLUE که یک روش شبیه‌سازی مبتنی بر روش مونت‌کارلو است، در برآورد میزان عدم قطعیت متغیرهای آلفا و n در سه مدل ون‌گنوختن، ون‌گنوختن- معلم و ون‌گنوختن- ‌بوردین با ثابت فرض نمودن سایر پارامترهای منحنی رطوبتی خاک، می‌باشد.
مواد و روش‌ها: ابتدا از دو نمونه خاک غالب مزرعه دانشگاه شهید باهنر کرمان نمونه‌برداری صورت گرفت و سپس با استفاده از داده‌های حاصل از دستگاه صفحه فشاری و نرم‌افزار RETC، منحنی رطوبتی خاک برای هر دو نمونه خاک (کلاس بافتی شن لومی و لوم رس سیلتی) بر پایه هر سه مدل مذکور، رسم و پارامترهای منحنی رطوبتی آنها استخراج شد، سپس با استفاده از روش GLUE، میزان عدم قطعیت پارامترهای آلفا و n در هر سه مدل بررسی شد. همچنین در ادامه براساس عملکرد GLUE میزان عدم‌قطعیت ذاتی هر یک از سه مدل برای هر کدام از کلاس‌های بافتی مورد مطالعه، تحت بررسی قرار گرفت.
یافته‌ها: نمودار پسین برای هریک از پارامترهای هیدرولیکی مورد مطالعه برای هر سه مدل مذکور در هر کلاس بافتی بدست آمد، محدوده اطمینان 95 درصد از شبیه‌سازی نقاط منحنی رطوبتی خاک نیز برای هر سه مدل در هر دو کلاس بافتی به عنوان خروجی اصلی این تحقیق حاصل شد. برای کمّی‌سازی میزان عدم‌قطعیت مدل‌ها 4 شاخص ارزیابی عدم‌قطعیت محاسبه و بررسی گردید. برپایه شاخص‌های ارزیابی بهترین مدل برای بافت لوم رس سیلتی و شن لومی به ترتیب مدل ون‌گنوختن-معلم (71/85= PCI ، 2013/0 d-factor=، 079/0 S=، 4642/0 T=) و مدل ون‌گنوختن (75/28= PCI ، 0766/0 d-factor= ، 6453/0 S=، 1034/1 T=) می‌باشد.
نتیجه‌گیری: نتایج حاصل از نمودارهای توزیع پسین نشان داد که متغیرهای هیدرولیکی آلفا و n در روند واسنجی از قابلیت شناسایی کمتری برخوردار بوده و نمی‌توان دامنه بهینه برای آن‌ها تعیین نمود، از این‌رو این دو متغیر نقش عمده‌ای در عدم‌قطعیت منحنی رطوبتی خاک دارند. همچنین بررسی عدم‌قطعیت هر سه مدل نشان داد که روش GLUE به‌خوبی توانسته است نقاط منحنی رطوبتی خاک را برآورد نماید به‌طوری که منحنی رطوبتی حاصل از نرم‌افزار RETC برای هر سه مدل در هر دو کلاس بافتی در محدوده اطمینان 95 درصد قرار گرفت. قرار گرفتن حدود 85 درصد از نقاط منحنی رطوبتی خاک برای بافت لوم رسی سیلتی در محدوده اطمینان 95 درصد، بیانگر توانایی بالای روش GLUE است.

کلیدواژه‌ها


عنوان مقاله [English]

Application of GLUE method to estimate uncertainty of alpha and n parameters in soil moisture characteristic curve

نویسندگان [English]

  • Vahid Reza Jalali 1
  • Samaneh Etminan 2
  • Majid Mahmoodabadi 3
  • Abbas Khashei-Siuki 4
  • Mohsen Pourreza Bilondi 5
1
2 Department of Soil Science, Faculty of Agriculture, Shahid Bahonar University of Kerman
3 Department of Soil Science, Faculty of Agriculture, Shahid Bahonar University of Kerman
4 Faculty member of Birjand University
5 Department of Water Engineering, Faculty of Agriculture, University of Birjand.
چکیده [English]

Background and Objectives: The soil moisture characteristic curve (SMCC) is a key concept in the modeling process of physical and hydrological studies of soil that plays a critical role in soil and water management. At the same time, the accuracy of the models used to describe the SMCC is affected by the trend of its parameters changes. The uncertainty analysis of hydraulic parameters of SMCC plays an important role in the modeling process, determining the model input parameters and evaluating the performance of the models. Therefore, the objective of this study was to evaluate the application of the GLUE simulation method, which is based on Monte Carlo simulation method, to estimate the uncertainty of alpha and n variables with constant assumption of other SMCC parameters, in three models of vanGenuchten, vanGenuchten-Mualem and vanGenuchten-Burden.
Materials and Methods: Initially, two soil samples were taken from Shahid Bahonar University of Kerman field and the SMCC for both soil samples (sandy loam and silty clay loam textures) was plotted on the basis of all three models using the Pressure Plate data and RETC Software and their moisture curve parameters were derived. Then, using the GLUE method, the uncertainty of alpha and n parameters in all three models were investigated. In addition, based on GLUE performance, the intrinsic uncertainty of each of the three models was evaluated for each of soil textures.
Results: The posterior distribution for each of the studied hydraulic parameters were obtained for three models in each textural class. The 95% confidence interval of SMCC simulations was obtained for all three models in two texture classes as the main output of this study. To quantify the uncertainty of the models, four uncertainty assessment indices were calculated and evaluated. Based on the evaluation indices, the best models for silty clay loam and loamy sand were the vanGenuchten-Mualem model (PCI = 85.71, d-factor 0.2013, S = 0.079, T = 0.4642) and the vanGenuchten model, (PCI = 28.75, d-factor = 0.0766, S = 0.6453, T = 1.1034) respectively.
Conclusion: The results of the posterior distributions diagrams showed that the alpha and n hydraulic variables were less identifiable in the calibration process and could not determine the optimal range for them, therefore, these two variables play a major role in the uncertainty of soil moisture curve. Also the uncertainty analysis of all three models showed that GLUE method was able to estimate soil moisture curve points so that the moisture curve obtained by RETC software for all three models was within 95% confidence level. The presence of about 85% of the soil moisture curve points for silty clay loam texture within the 95% confidence interval indicates the high capability of the GLUE method.

کلیدواژه‌ها [English]

  • Monte Carlo method
  • uncertainty
  • van Genuchten models
1.Ahmadizadeh, M., and Marosi, S. 2017. Beyaesian analysis and particle filter application in rain fall-runoff models and quantification of uncertainty. Gorgan, J. Water Soil Cons. 24: 1. 251-264.
(In Persian).
2.Ashofteh, P.S., and Bozorg haddad, O. 2015. A new approach for performance evaluation of AOGCM models in simulating runoff. Gorgan. J. Water Soil Cons. 22: 2. 92-110. (In Persian)
3.Beven, K., and Binley, A. 1992. The future of distributed models: Model calibration and uncertainty prediction. Hydrol. Process. 6: 3. 279-298.
4.Beven, K. 1993. Prophecy, reality and uncertainty in distributed hydrological modelling. Adv. Water Resour.16: 1. 41-51.
5.Blasone, R.S., Madsen, H., and Rosbjerg, D. 2008. Uncertainty assessment of integrated distributed hydrological models using GLUE with Markov
chain Monte Carlo sampling. J. Hydrol. 353: 1-2. 18-32.
6.Chen, G., Jiao, L., and Li, X. 2016. Sensitivity Analysis and Identification of Parameters to the
van Genuchten Equation. J. Chem. 1-8. 10.1155/2016/9879537.
7.Elkady, T.Y., Al-Mahbashi, A.M., and Al-Refeai, T.O. 2013. Stress-dependent soil-water characteristic curves of lime-treated expansive clay. J. Mater. Civ. Eng. 27: 3. 04014127.
8.Gao, H., and Shao, M. 2015. Effects of temperature changes on soil hydraulic properties. Soil Till. Res. 153: 145-154.
9.Ghavidelfar, S., Shamseldin, A.Y., and Melville, B.W. 2015. Estimation of soil hydraulic properties and their uncertainty through the Beerkan infiltration experiment. Hydrol. Process. 29: 17. 3699-3713.
10.Han, Z., and Vanapalli, S.K. 2016. Stiffness and shear strength of unsaturated soils in relation to soil-water characteristic curve. J. Géotechnique. 66: 8. 627-647.
11.Hamraz, B.S., Akbarpour, A., and Pourreza-Bilondi, M. 2016. Assessment of parameter uncertainty of MODFLOW model using GLUE method. Gorgan, J. Water Soil Cons. 22: 6. 61-79.
12.Hong, W.T., Jung, Y.S., Kang, S., and Lee, J.S. 2016. Estimation of soil-water characteristic curves in multiple-cycles using membrane and TDR system. J. Mater. 9. 1019. 10.3390/ma9121019.
13.Jafarzadeh, M.S., Rouhani, H., Salmani, H., and Fathabadi, A. 2016. Reducing uncertainty in a semi distributed hydrological modeling within the GLUE framework. Gorgan, J. Water Soil Cons. 23: 1. 83-100. (In Persian)
14.Jiang, Y., Chen, W., Wang, G., Sun, G., and Zhang, F. 2017. Influence of initial dry density and water content on the soil–water characteristic curve and suction stress of a reconstituted loess soil. B. Eng. Geol. Environ. 76: 3. 1085-1095.
15.Jin, X., Xu, C.Y., Zhang, Q., and Singh, V.P. 2010. Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model. J. Hydrol. 383: 3-4. 147-155.
16.Li, L., Xia, J., Xu, C.Y., and Singh, V.P. 2010. Evaluation of the subjective factors of the GLUE method and comparison with the formal Bayesian method in uncertainty assessment
of hydrological models. J. Hydrol.390: 3-4. 210-221.
17.Minasny, B., and Field, D.J. 2005. Estimating soil hydraulic properties and their uncertainty: the use of stochastic simulation in the inverse modelling of the evaporation method. Geoderma. 126: 3-4. 277-290.
18.Najafian, S., Yazdani, M.R., Azari, A., and Rahimi, M. 2017. Climate change impacts on the maximum daily discharge under conditions of uncertainty (Dinavar basin in Kermanshah). Gorgan. J. Water Soil Cons. 24: 1. 139-156. (In Persian)
19.Pourreza Bilondi, M., Akhoond Ali, A.M., Gharaman, B., and Telvari, A.R. 2015. Uncertainty analysis of a single event distributed rainfall-runoff model by using two different Markov chain Monte Carlo methods. Gorgan. J. Water Soil Cons. 21: 5. 1-25 (In Persian)
20.Rouhani, H., Ghandi, A., Seyedian, S.M., and Kashani, M. 2017. Uncertainty analysis of rainfall projections (Case study: Bojnourd and Mashhad synoptic gauge station). Gorgan. J. Water Soil Cons. 24: 1. 189-202. (In Persian)
21.Salarijazi, M. 2017. Determination of distributional changes of annual rainfall in some semi-northen stations in Iran. Gorgan. J. Water Soil Cons.24: 4. 143-159. (In Persian)
22.Salarijazi, M. 2017. Quantiles trend estimation of variables of annual maximum floods. Gorgan. J. Water Soil Cons. 24: 1. 25-46. (In Persian)
23.Scharnagl, B., Vrugt, J.A., Vereecken, H., and Herbst, M. 2011. Inverse modelling of in situ soil water dynamics: Investigating the effect of different prior distributions of the soil hydraulic parameters. Hydrol. Earth Syst. Sci.15: 10. 3043-3059.
24.Singh, U.K., Ren, L., and Kang, S. 2010. Simulation of soil water in space and time using an agro-hydrological model and remote sensing techniques. Agric. Water Manage. 97: 8. 1210-1220.
25.Shabestani, A., Darzi-Nafchali, A., and Karandish, F. 2017. Estimating and uncertainty analysis of potential evapotranspiration under climate change in Shiraz. Gorgan, J. Water Soil Cons. 23: 5. 159-174. (In Persian)
26.Shafiei, M., Ghahraman, B., Saghafian, B., Davary, K., Pande, S., and Vazifedoust, M. 2014. Validation and uncertainty SWAP model using GLUE method.J. Water Res. Agric. 28: 2. 476-488.
(In Persian)
27.Stedinger, J.R., Vogel, R.M., Lee, S.U., and Batchelder, R. 2008. Appraisal of the generalized likelihood uncertainty estimation (GLUE) method. Water Resour. Res. 44: 12. 2-17.
28.van Genuchten, M.T. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1. S.S.S.A. J. 44: 5. 892-898.
29.van Genuchten, M.V., Leij, F.J., and Yates, S.R. 1991. The RETC code for quantifying the hydraulic functions of unsaturated soils. EPA/600/2-91/065, R.S. 83.
30.Wassar, F., Gandolfi, C., Rienzner, M., Chiaradia, E.A., and Bernardoni, E. 2016. Predicted and measured soil retention curve parameters in Lombardy region north of Italy. I. S. W. C. R.
4: 3. 207-214.
31.Xiong, L., Wan, M., Wei, X., and O'connor, K.M. 2009. Indices for assessing the prediction bounds of hydrological models and application by generalised likelihood uncertainty estimation/Indices pour évaluer les bornes de prévision de modèles hydrologiques etmise enœuvre pour une estimation d'incertitude par vraisemblance généralisée. H. S. J. 54: 5. 852-871.
32.Yan, Y., Liu, J., Zhang, J., Li, X., and Zhao, Y. 2017. Quantifying soil hydraulic properties and their uncertainties by modified GLUE method. Int. Agrophys. 31: 3. 433-445.