تحلیل تعامل بخش کشاورزی و صنعت در تخصیص آب با رویکرد بازی های غیرهمکارانه

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشگاه علوم کشاورزی و منابع طبیعی ساری

2 علوم کشاورزی و منابع طبیعی ساری

3 عضو هیئت علمی دانشگاه علوم کشاورزی و منابع طبیعی ساری

چکیده

سابقه و هدف: مدیریت منابع آب اغلب با مناقشاتی نظیر عدم رضایت آب‌بران از میزان آب تخصیص‌یافته به آن‌ها همراه است. در تخصیص منابع آب، ذی‌نفعان مختلفی نقش دارند و میزان تخصیص آب به هریک از آن‌ها، بر نوع رفتار استراتژیک آنان تأثیرگذار است. نظریه‌ی بازی‌ها روشی برای مطالعه رفتار استراتژیک تصمیم‌گیرندگان در مسائل مربوط به منابع آب با هدف تدوین استراتژی‌های مناسب است و می‌تواند در مدل‌سازی تخصیص آب مورد استفاده قرار گیرد. در این پژوهش، نظریه‌ی بازی‌های غیرهمکارانه با کاربرد تعاریف پایداری برای مدل‌سازی توافق دو جانبه بین بخش‌های صنعت و کشاورزی در شرایط نابرابر مورد استفاده قرار گرفته است.
مواد و روش‌ها: در این پژوهش، مسئله تخصیص آب با استفاده از تعاریف مختلف پایداری مورد بررسی قرار گرفته است. هر یک از دو بخش صنعت و کشاورزی برای گسترش فعالیت خود نیاز به افزایش حجم آب دریافتی دارند. بخش کشاورزی در صورت دریافت هزینه، مقداری از آب تخصیص‌یافته به خود را به بخش صنعت خواهد داد و این درحالی است که بخش صنعت می‌تواند به‌جای پرداخت هزینه، ابزار و ماشین‌آلات مورد نیاز بخش کشاورزی را تهیه کند. بخش کشاورزی دو استراتژی تقسیم آب و عدم تقسیم آب را دارد، درحالی‌که بخش صنعت نیز دو استراتژی پرداخت و عدم پرداخت مالی را پیش‌رو دارد. برای حل این مسئله ارتباط دادن این بازی و یک بازی دیگر که در آن بخش صنعت بر بخش کشاورزی دارای امتیازاتی می‌باشد را می‌توان پیشنهاد نمود. در این حالت می‌توان امتیاز‌های انحصاری هر بخش را در‌نظر گرفت که در این صورت هر یک از دو بخش کشاورزی و صنعت از مزیت‌های همکارانه در این بازی، سود خواهند برد و تمایل کمتری به رفتار غیرهمکارانه از خود نشان می‌دهند.
یافته‌ها: در این پژوهش، بخش‌های صنعت و کشاورزی می‌توانند در بازی به سه شکل رفتار کنند:1- هر دو رفتار همکارانه داشته باشند. 2- هر دو رفتار غیرهمکارانه داشته باشند. 3- یکی از دو طرف رفتار همکارانه و دیگری رفتار غیرهمکارانه داشته باشد. اگرچه هردو بخش صنعت و کشاورزی ممکن است به یکدیگر پرداخت‌های مالی داشته باشند، اما پیامدهایی که همراه با پرداخت مالی باشند، بر اساس پایداری‌های نش، حرکت محدود و Non-Myopic، پایدار نمی‌باشد. نتایج نشان می‌دهد که پرداخت مالی، در این بازی ترکیبی راه حل مناسبی نمی‌باشد. درصورتی که پرداخت مالی غیر‌عملی در نظر گرفته شود، همه‌ی استراتژی‌های مرتبط با آن را می‌توان حذف نمود. در نتیجه بازی ترکیبی، به بازی کوچکتری تبدیل می‌شود. هر یک از دو بخش کشاورزی و صنعت، تمایلی به تغییر از رفتار همکارانه را به‌دلیل تهدیدهای ممکن از سوی بخش دیگر، ندارند. به‌عبارت دیگر، در صورتی‌که بخش کشاورزی تصمیم به تغییر رفتار را برای افزایش پیامد خود اتخاذ کند، بخش صنعت نیز تصمیم خود را تغییر خواهد داد. این دقیقا رفتاری است که مطابق پایداری‌های GMR SMR SEQ ,Lh ,Non-Myopic نیز می‌باشد.
نتیجه‌گیری: در این پژوهش، از نظریه‌ی بازی‌های غیرهمکارانه و تعاریف پایداری به‌منظور مدل‌سازی تخصیص آب و توافق دوجانبه از سوی بخش‌های صنعت و کشاورزی استفاده گردید. مفهوم پایداری نش در پیدا کردن حل نهایی مسائل منابع آب که اغلب به‌شکل بازی‌های پویا و چند حرکته هستند، ممکن است کارآمد نباشد. پایداری Non-Myopic رفتار یک بازیکن را با اطلاعات کامل از تعاملات بازیکنان شبیه‌سازی می‌کند، که ممکن است برای مسائل منابع آبی نامناسب باشد، زیرا بازیکنان در دنیای واقعی نمی‌توانند بیش از چند حرکت را در نظر بگیرند و در آینده واکنش نشان دهند. سایر تعاریف پایداری معرفی شده می‌توانند امکان حل مناقشات آبی را بهتر پیش‌بینی کنند. کاربرد این مفاهیم پایداری می‌تواند کارایی مدل‌های مناقشات منابع آب را بهبود بخشد. زمانی‌که عدم قطعیت در رفتار بازیکنان وجود دارد، کاربرد مفاهیم پایداری سودمند بوده و می‌تواند راهکار مناسبی جهت تصمیم‌گیری بهتر در مسایل مدیریتی ارائه نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Analyzing the Interaction of Agriculture and Industry Sectors in Water allocation with the Non-Cooperative Game Approach

نویسندگان [English]

  • Mahsa Noori 1
  • Alireza Emadi 2
  • Ramin Fazloula 3
1 Sari Agricultural Sciences and Natural Resources University
2 Faculty Member of Sari Agricultural Sciences and Natural Resources University
3 Faculty Member of Sari Agricultural Sciences and Natural Resources University
چکیده [English]

Background and objectives: Water resource management is often associated with conflicts such as the lack of satisfaction of water users with the amount of water allocated to them. Different stakeholders are involved in water resources allocation, and the water allocation to each of them affects the type of their strategic behavior.The game theory is a method for studying the strategic behavior of decision makers in water resource issues with the goal of developing appropriate strategies and can be used in modeling water allocation. In this paper, the non-cooperative game theory by application of stability definitions is considered for the modeling of the bilateral agreement by the industry and agriculture sector in unequal conditions.
Materials and Methods: In this study, the water allocation issue has been investigated by various stability definitions. Each of two industry and agriculture sectors needs to increase the amount of water to expand their activities. The agricultural sector is able to share its water to the industrial sector in exchange for the cost, while the industry can provide agricultural machinery and equipment in return for payment. The agricultural sector has two strategies, water sharing and no water sharing. While the industry sector also has two payment and no payment strategies that can take each one. In order to solve the problem, linking this game and another game in which the industry sector has advantages than the agricultural sector can be proposed. In this case, the exclusive privilege of each sector are considered, in which case each of the two agricultural and industrial sectors will benefit from the cooperative game and will less willingness to engage in non-cooperative behavior.
Results: In this study the industry and agriculture sectors can play in the game in three ways: 1- They have both cooperative behavior. 2- Both non-cooperative behaviors. 3- One side has cooperative behavior and the other has non-cooperative behavior. Although both industry and agriculture sectors may have payments to each other, but the outcome with payment, according to the Nash and Limited-Move and Non-Myopic stabilities, is not stable. The results show that financial payments in this interconnected game are not perfect solution. When the payment is considered impractical, all related strategies can be eliminated. So the interconnected game becomes smaller.Each of the two sectors of agriculture and industry does not have the desire to change the cooperative behavior due to possible threats from the other part. In other words, if the agricultural sector decides to change its behavior to increase its outcome, the industry sector has changed its decision. Therefore, the agricultural sector will not shift its strategy from cooperative to non-cooperative behavior. This is precisely the behavior that is consistent with the GMR, SMR, SEQ, Limited-Move, and Non-Myopic stabilities.
Conclusion: In this research, the non-cooperative game theory and stability definitions have been used to model water allocation and bilateral agreement by the industry and agriculture sectors. The concept of Nash stability in finding the ultimate solution to water resource problems, which is often not a single-player game with dynamic nature, may fail. Non-Myopic stability simulates a player's behavior by understanding the interactions among decision-makers, which may be inappropriate for water resource issues, because players cannot take more than a few moves and react in the future in the real-world. Other stability definitions can better predict the possibility of solving the water conflict. The application of these stability concepts can improve the efficiency of conflict resolution models. When there is uncertainty about the behavior of players, the application of different stability concepts is useful and can provide a suitable solution for better decision making in water resource management.

کلیدواژه‌ها [English]

  • conflict resolution
  • non-cooperative game theory
  • stability definitions
  • water allocation
  • water resources management
1.Abdoli, Gh. 2016. Game theory and its applications: Incomplete information, Evolutionary and cooperative games. Samt Press. 352p. (In Persian)
2.Adams, G., Rausser, G., and Simon, L. 1996. Modelling multilateral negotiations: an application to California Water Policy. J. Econ. Behav. Org. 30: 1. 97-111.
3.Fisvold, G.B., and Caswell, M.F. 2000. Transboundary water management: game theoretic lessons for projects on the US–Mexico border. J. Agric. Econ. 24: 101-111.
4.Gardner, R., Moore, M.R., and Walker, J.M. 1997. Governing a groundwater commons: a strategic and laboratory analysis of Western water law. Economic Inquiry. 35: 2. 218-234.
5.Huang, X., Chen, X., and Huang, P. 2018. Research on fuzzy cooperative game model of allocation of pollution discharge rights. J. Water. 10: 5. 2-11.
6.Hipel, K.W., Fang, L., Kilgour, D.M., and Haight, M. 1993. Environmental conflict resolution using the graph model. P 17-20. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. Le Touquet, France.
7.Kerachian, R., Abed-Elmdoust, A., and Parsapour-Moghaddam, P. 2015. A Heuristic Evolutionary Game Theoretic Methodology for Conjunctive Use of Surface and Groundwater Resources. J. Water Resour. Manage. 29: 11. 3905-3918.
8.Lippai, I., and Heaney, P. 2000. Efficient and equitable impact fees for urban water systems. J. Water Resour. Plan. Manage. 126: 2. 75-84.
9.Madani, K., and Hipel, K.W. 2007. Strategic insights into the Jordan River conflict. P 1-10. In: Kabbes, K.C. (Ed.), Proceeding of the 2007 World Environmental and Water Resources Congress, Tampa, Florida. American Society of Civil Engineers.
10.Madani, K. 2010. Game Theory and Water Resources. J. Hydrol. 81: 225-238.
11.Madani, K., and Hipel, K.W. 2011. Non-Cooperative Stability Definitions for Strategic Analysis of Generic Water Resources Conflicts”. Water Resource Management. Pp: 1949-1977.
12.Mehrparvar, M., Ahmadi, A., and Safavi, H.R. 2015. Social resolution of conflicts over water resources allocation in a river basin using cooperative game theory approaches: a case study. Inter. J. River Basin Manage. 14: 1. 33-45.
13.Nash, J.F. 1951. Non-cooperative games. Ann Math. 54: 2. 286-295.
14.Niksokhan, M.H., Kerachian, R., and Karamouz, M. 2009. A game theoretic approach for trading discharge Permitsin Rivers. J. Water Sci. Tech. 60: 3.793-804.
15.Sadegh, M., Mahjouri, N., and Kerachian, R. 2010. Optimal interbasin water allocation using crisp and fuzzy Shapley games. Water Resources management. 24: 10. 2291-2310.
16.Sauer, P., Dvorak, A., Lisa, A., and Fiala, P. 2003. A procedure for negotiating pollution reduction under information asymmetry. Environmental and Resource Economics. 24: 2. 103-119.
17.Schreider, S., Zeephongsekul, P., and Fernandes, M. 2007. A game-theoretic approach to water quality management. In: Oxley, L., Kulasiri, D. (Eds.), MODSIM 2007 International Congress on Modelling and Simulation, Modelling and Simulation Society of Australia and New Zealand. P 2312-2318. ISBN: 978-0-9758400-4-7.
18.Sheikhmohammady, M., and Madani, K. 2008. Bargaining over the Caspian Sea-the largest Lake on the earth. In: Babcock, R.W., Walton, R. (Eds.), Proceeding of the 2008 World Environmental and Water Resources Congress, Honolulu, Hawaii. American Society of Civil Engineers. Pp: 1-9.
19.Straffin, P., and Heaney, J. 1981. Game theory and the Tennessee valley authority. Inter. J. Game Theor. 10: 1. 35-43.
20.Von Neumann, J., and Morgenstern, O. 1944. Theory of games and economic behavior. Princeton University Press. Princeton. 776p.