ارزیابی دو روش ریز مقیاس نمایی آماری LARS-WG و SDSM در برآورد تغییرات پارامترهای اقلیمی (مطالعه موردی:دشت بیرجند)

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشگاه بیرجند، دانشکده کشاورزی، گروه مهندسی آب

2 استادیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه بیرجند

3 دانشیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه بیرجند

چکیده

سابقه و هدف: در حال حاضر معتبرترین ابزار جهت تولید سناریوهای اقلیمی، مدل‌های سه بعدی جفت شده جوی-اقیانوسی گردش عمومی هوا می‌باشند که به طور مخفف از آن به عنوان AOGCM یاد می‌شود. یکی از مشکلات عمده در استفاده از خروجی مدل‌های AOGCM، بزرگ بودن مقیاس مکانی سلول محاسباتی آن‌ها، نسبت به منطقه مورد مطالعه است و باید نتایج خروجی این مدل‌ها کوچک مقیاس شوند. روش‌های آماری متعددی جهت ریزمقیاس نمودن خروجی‌های مدل‌هایAOGCM برای دستیابی به دقت بیشتر توسعه یافته‌اند. تفاوت دقت روش‌های ریزمقیاس نمایی متناسب با مکان و نوع مدل اقلیمی می‌تواند باعث اختلاف در نتایج شبیه‌سازی گردد. لذا بررسی دقت این روش‌ها از اهمیت بالایی برخوردار است. پژوهشگران زیادی در سرتاسر دنیا به بررسی دقت روش‌های گوناگون در ریزمقیاس‌نمایی پرداخته‌اند. نتایج پژوهشگران در سرتاسر دنیا بیانگر این مطلب می‌باشد که بر اساس نوع خروجی مدل‌هایAOGCM و همچنین کمیت و کیفیت داده‌های مشاهداتی منطقه مورد مطالعه شبیه‌سازی مؤلفه‌های اقلیمی متفاوت خواهد بود. هدف از این پژوهش بررسی دقت روش‌های ریزمقیاس نمایی آماری LARS-WG و SDSM برای بارندگی و متوسط درجه حرارت روزانه و برای ایستگاه سینوپتیک بیرجند می‌باشد.
مواد و روش‌ها: آمار مشاهداتی دوره 2000-1960 از سازمان‌ هواشناسی استان استخراج شد. دوره 1990-1960 برای واسنجی و دوره 2000-1991 برای دوره صحت‌سنجی انتخاب شدند. سری شاخص‌های حدی اقلیمی در دوره صحت‌سنجی برای آمار مشاهداتی ایستگاه سینوپتیک و شبیه‌سازی شده توسط دو روش ریزمقیاس‌نمایی محاسبه شد. به منظور ارزیابی دقت دو روش در محاسبه شاخص‌ها، از آزمون‌های آماری استفاده شد. بدین ترتیب که حساسیت روش‌ها به ناهنجاری‌های بزرگ مقیاس (همبستگی داده‌ها) و توانایی روش‌های ریزمقیاس‌نمایی برای برگرداندن توزیع داده‌های مشاهداتی به ترتیب با آزمون‌های همبستگی پیرسون و رتبه‌ نشان‌دار ویل‌کاکسون مورد ارزیابی قرار گرفت.
یافته‌ها: پس از بررسی نتایج مشخص شد که برتری قابل توجهی در آزمون همبستگی پیرسون بین دو روش وجود ندارد. هرچند که در دو روش نتایج برازش بیش از 50% شاخص‌های مشاهداتی و شبیه‌سازی شده قابل قبول است. نتایج عملکرد دو مدل در آزمون ویل‌کاکسون نشان داد که تفکر مبدل‌های اقلیمی به طور قابل ملاحظه‌ای بالاتر از روش‌های رگرسیون خطی می-باشد. نتایج این آزمون نشان داد که در روش LARS-WG بیش از 90% شاخص‌ها برازش خوبی را دارا می‌باشند. همچنین برازش شاخص‌های دما در روش SDSM-DC در مقایسه با روش LARS-WG بسیار نامطلوب بود.
نتیجه‌گیری: نتایج مطالعه نشان داد که به طور کلی روش LARS-WG در مقایسه با روش SDSM-DC دقت بهتری دارد. این برتری به خصوص در در پیش‌بینی تابع توزیع همسان با داده‌های مشاهداتی محسوس‌تر بود.

کلیدواژه‌ها


عنوان مقاله [English]

assessment of statistical downscaling methods LARS-WG & SDSM in forecast of climate parameter variation

نویسندگان [English]

  • ahmad jafarzadeh 1
  • Abbas Khashei-Siuki 2
  • Ali Shahidi 3
1 Department of Water Engineering, Faculty of Agriculture, University of Birjand, Iran
2
3
چکیده [English]

Background and Objectives: Now most reliable tool to produce climate scenarios is use of Atmosphere-Ocean General Circulation Model outputs which stands as AOGCM. One of the using major problems of AOGCM outputs is computational large cell size of their simulation in any region. So first must their outputs has been downscaled and then they used. Present several stochastically methods for downscaling AOGCM outputs to increase their accuracy in simulate. It should be noted that Deference in downscaling methods can cause deference in simulation results. So assess accuracy of downscaling methods is very necessary in any region. Many researchers around the world to check the accuracy of various downscaling methods have focused. Results of Research study around the world indicates that simulation of climate and hydrological parameters depending on output of AOGCM models and also quality and quantity of observation data are very deferent. The aim of this study is assessment of statistical downscaling methods for precipitation and temperature include LARS-WG and SDSM in Birjand synoptic station.
Materials and Methods: Observation data of Birjand synoptic station include precipitation, maximum and minimum temperature and solar watch daily on 1960-2000 were taken of province Meteorological organization. The period 1960-1990 is used for models calibration (train) and 1991-2000 for validation (test) selected. Series of climate extremes indices evaluated for observed data of synoptic station and simulated by downscaling methods on validation period. Statistical tests are used for evaluation and analysis of downscaling methods performance. The sensitivity of the methods to large-scale anomalies (correlation between observed and simulated data) and their ability to replicate the observed data distribution in the validation period are separately tested for each index by Pearson correlation and Wilcoxon signed rank tests, respectively.
Results: By analysis of results defined that between of downscaling methods there isn’t significant superiority in person correlation test. While in correlation test in both model p-value of more 50% of observation and simulation indices is most of 0.05 and they acceptable. Results of performance models in Wilcoxon test showed that performance of weather generator technic is significantly better than linear regression method. Results of this test showed that more of 90% of indices have a suitable fit in LARS-WG. Also fit of temperature indices in SDSM-DC compared with LARS-WG were very weak.
Conclusion: results of this study showed that LARS-WG method compared with SDSM-DC method is more accurate generally. This accuracy in forecast of distribution function was more tangible.

کلیدواژه‌ها [English]

  • Wilcoxon Signed Rank Test
  • Climate Extremes indices
  • Pearson Correlation
  • HADCM3
1.Aghashhi, M., Ardastani, M., Niksokhan, M., and Tahmasbi, B. 2010. intrudoction and compare models for small scale SDSM LARS-WG and environmental parameters in studies of climate change. In 6th national conferance of Tehran-Iran. (Translated In Persian) 
2.Bavani, M., Moradi, S., and Mohammadzadeh, M. 2009. comparison downscalind methods and AOGCM on assessment of regional climate change. Physic of earth and atmosphere,
36: 99-110.
3.Bavani, M., Morid, S., and Mohammadzadeh, M. 2013. comparsion of downscaling methods LARS-WG & ASD in forecast rain and temprature in defferent climate. irrigation and drainage. 2: 8. 233-245. (Translated In Persian)
4.Bronaugh, D. 2011. Pcic for the Pacific Climate Impacts Consortium climdex.pcic: PCIC implementationof CLIMDEX routines. Rpackage version 0.4-1.
5.Camici, S., Palazzi, E., Pieri, A., Brocca, L., Moramarco, T., and Provenzale, A. 2015. Comparison between dynamical and stochastic downscaling methods in central Italy.
In EGU General Assembly Conference Abstracts, 10270.
6.Dehghanipoor, A., Hasanzadeh, M., Attari, J., and Araghinejad, S. 2010. Assessing the strength of the downscaling model SDSM rainfall, temperature and evaporation. In 11th conference irrigation and evaporation. Kerman-Iran. (Translated In Persian)
7.Déqué, M., Rowell, D., Lüthi, D., Giorgi, F., Christensen, J., Rockel, B., Jacob, D., Kjellström, E., De Castro, M., and van den Hurk, B. 2007. An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Climatic Change, 81: 53-70.
8.Dibike, Y., and Coulibaly, P. 2005. Hydrologic impact of climate change in the
Saguenay Watershed:Comparison of downscaling methods and hydrologic models. J. Hydrol. Pp: 145-163.
9.Duan, K., and Mei, Y. 2014. A comparison study of three statistical downscaling methods and their model-averaging ensemble for precipitation downscaling in China. Theoretical and Applied Climatology, 116: 707-719.
10.Farajzadeh, M., Oji, R., Cannon, A., Ghavidel, Y., and Bavani, A.M. 2014. An evaluation of single-site statistical downscaling techniques in terms of indices of climate extremes for the Midwest of Iran. Theoretical and Applied Climatology, Pp: 1-14.
11.Graca Lopes, P. 2008. Assessment of Climate Change Statistical Downscaling Methodes. Universidade Nova De Lisboa Faculdade de Ciências e Tecnologia, Pp: 1-51.
12.Hashmi, M.Z., Shamseldin, A.Y., and Melville, B.W. 2011. Comparison of SDSM and LARS-WG for simulation and downscaling of extreme precipitation events in a watershed. Stochastic Environmental Research and Risk Assessment, 25: 475-484. 
13.Hassan, H., Aramaki, T., Hanaki, K., Matsu, T., and Wilby, R.L. 1998. LakeStratification and temperature profiles simulated using downscaled GCM output. J. Water Sci. Technol. 38: 217-226. 
14.Hassan, Z., Shamsudin, S., and Harun, S. 2014. Application of SDSM and LARS-WG
for simulating and downscaling of rainfall and temperature. Theoretical and Applied Climatology, 116: 243-257. 
15.Hay, L., Wilby, R., and Leavesley, G. 2000. A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. American Water Resources Association, 36: 387-397.
16.Hidalgo, H.G., Dettinger, M.D., and Cayan, D.R. 2008. Downscaling with constructed analogues: Daily precipitation and temperature fields over the United States.
17.Jafarzadeh, A., Khozeymehnejad, H., Khashei, A., and Bazi, J. 2012. Zoning impact
of climate change on rainfall patterns (Case study: South Khorasan province).
In Congressional water harvesting and watershed management, BirjandUniversity. Birjand-Iran. (Translated In Persian)
18.Karl, T.R., Knight, R.W., Easterling, D.R., and Quayle, R.G. 1996. Indices of climate change for the United States. Bulletin of the American Meteorological Society, 77: 279-292.
19.Kazmi, D.H., Rasul, G., Li, J., and Cheema, S.B. 2014. Comparative Study for ECHAM5 and SDSM in Downscaling Temperature for a Geo-Climatically Diversified Region, Pakistan. Applied Mathematics. 5: 137-143.
20.Khan, M.S., Coulibaly, P., and Dibike, Y. 2006. Uncertainty analysis of statistical downscaling methods. J. Hydrol. 319: 357-382.
21.Kidson, J.W., and Thompson, C.S. 1998. A comparison of statistical and model-based downscaling techniques for estimating local climate variations. J. Clim. 11: 735-753.
22.Kilsby, C., Jones, P., Burton, A., and Ford, A. 2007. Fowler H.J et al., A daily weather generator for use in climate change studies. Environmental Modelling & Software,
22: 1705-1719.
23.Nury, A.H., and Alam, M.J.B. 2014. Performance Study of Global Circulation Model HADCM3 Using SDSM for Temperature and Rainfall in North-Eastern Bangladesh. J. Sci. Res. 6: 1. 87-96.
24.Richardson, C. 1981. Stochastic simulation of daily precipitation, temperature, and solar radiation. Water resources research, 17p.
25.Richardson, C., and Wright, D. 1984. WGEN: A model for generating daily weather variables. In WGEN: A model for generating daily weather variables. US Department of Agriculture, Agricultural.
26.Robera, N., Hardenberg, J.V., and Provenzale, A. 2006. Rainfall downscaling and
flood forecasting: a case study in the Mediterranean area. J. Natur. Hazards Earth Syst. Sci. 6: 611-619.  
27.Rohi, F., Mirrokni, M., Massah Bovani, U., and Nasresfahani, L. 2012. Check downscaling model SDSM ability to choose the best predictor variables. In 15th conferance liquide dynamic. Bandarabbas-Iran. (Translated In Persian)
28.Rohi, F., Mirrokni, M., Massah Bovani, U., and Nasresfahani, L. 2016. Performance Assessment of SDSM model in downscaling rainfull and precipitaion In hot and dry climates (Case study: hamdidy of Yazd and Tabas station). Iran. J. Geophysic. 9: 4. 104-125.
29.Salehnia, N., Alizadeh, A., and Sayari, N. 2013. Comparsion of downscaling methods LARS-WG & ASD in forecast rain and temprature in defferent climate. irrigation and drainage, 2: 233-245. (Translated In Persian)
30.Semenov, M. 1997. Use of A Stochastic Weather Generator in the Development of Climate Change Scenarios Climatic Change. Kluwer Academic Publishers. Printed in the, 35: 397-414.
31.Semenov, M. 2002. LARS-WG A Stochastic Weather Generator for Use in Climate Impact Studies. In Version 3, ed. R. Research.
32.Semenov, M. 2010. LARS-WG 5: Quick Start, LARSWG 5: a stochastic weather generator for climate change impact assessments. In Centre for Mathematical and Computational Biology Rothamsted Research. Harpenden, Herts.
33.Semenov, M., and Barrow, E. 1997. Use of A Stochastic Weather Generator in the Development of Climate Change Scenarios Climatic Change. Kluwer Academic Publishers. Printed in the Netherlands, 35: 397-414.
34.Semonov, M., Brooks, R., Barrow, E., and Richardson, C. 1998. Comparison of the WGEN and LARS-WG stochastic weather generators in divers climates. Climate Research, 10p.
35.Shahidi, A., Masoudi, M., and Jafarzardeh, A. 2012. Performance assessment of integrated urban wastewater of Birjand. In national conferences of water and wastewater engineering. Kerman-Iran. (Translated In Persian)
36.Sunyer Pinya, M.A., Hundecha, Y., Lawrence, D., Madsen, H., Willems, P., Martinkova, M., Vormoor, K., Bürger, G., Hanel, M., and Kriaučiuniene, J. 2015. Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe. Hydrology and Earth System Sciences, 19: 1827-1847.
37.Wilby, R., Dawson, C., and Barrow, E. 2002. SDSM-a decision support tool for
the assessment of regional climate change impacts. Environmental Modelling & Software, 17: 147-159.
38.Wilby, R., Hay, L., and Leavesley, G. 1999. A comparison of downscaled and raw GCM output: implications for climate change scenarios in the San JuanRiver basin, Colorado.
J. Hydrol. 225p.
39.Wilby, R., Tomlinson, O., and Dawson, C. 2003. Multi-site simulation of precipitation by conditional resampling. Climate Research, 23: 183-194.
40.Wilby, R., and Wigley, T. 2000. Precipitation predictors for downscaling: observed and general circulation model relationships. Inter. J. Climatol. 20: 641-661.
41.Wilby, R.L., Wigley, T., Conway, D., Jones, P., Hewitson, B., Main, J., and Wilks, D. 1998. Statistical downscaling of general circulation model output: a comparison of methods. Water resources research, 34: 2995-3008.
42.Wilby, R.L., Hassan, H., Hanaki. 1997. Statistical downscaling of hydrometeorological variables using general circulation model output, J. Hydrol. 205: 1-19.
43.Wilks, D. 1992. Adapting stochastic weather generation algorithms for climate change studies. Climate Change, 22: 67-84.
44.Zorita, E., and Von Storch, H. 1999. The analog method as a simple statistical downscaling technique: comparison with more complicated methods. J. Clim. 12: 2474-2489.