تلفیق مدل‌های HEC-HMS و GLDAS در تخمین رواناب مناطق فاقد آمار

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 گروه مهندسی اب أانشکده کشاورزی أانشگاه بوعلی سینا

2 دانشجوی کارشناسی ارشد/ دانشگاه بوعلی سینا همدان

3 استاد/دانشگاه بوعلی سینا همدان

4 استادیار/ دانشگاه گیلان

چکیده

سابقه و هدف: توسعه منابع آب، مستلزم شناخت میزان، توزیع زمانی و مکانی آب، و همچنین ارزیابی دقیق عملکرد آن می‌باشد. یوسوپ و همکاران (2007) برای مدل سازی بارش-رواناب در یک حوضه کوچک در مالزی از مدل HEC-HMS استفاده کردند و نتایج آن را در هر دو مرحله صحت سنجی و اعتبارسنجی رضایت‌بخش اعلام نمودند (20). برنامه‌ریزی در مناطق فاقد آمار مستلزم تهیه‌ی داده‌های با کیفیت مناسب می‌باشد، لذا یکی از روش‌های رفع این معضل، استفاده از داده‌های ماهواره‌ای می‌باشد. بدین منظور، مدل‌های سطح زمین بزرگ مقیاس نظیر GLDAS که بر اساس مشاهدات ماهواره‌ای بروز شده‌اند، به دلیل ارائه پارامترهای هیدرولوژیکی از اهمیت بالایی برخوردار می‌باشند و به دلیل پوشش جهانی این داده‌ها، کاربرد داده‌های حاصل از این مدل در مطالعات بارش– رواناب مورد توجه واقع شده است. مدل GLDAS با هدف بررسی روند تغییرات اجزای بیلان آب و انرژی در سطح زمین، اقدام به تولید پارامترهای هواشناسی و هیدرولوژیکی با کیفیت کنترل شده در یک دوره آماری 1948 الی 2014 نموده است. هدف از این تحقیق، ارائه مدل تلفیقی در تخمین آبدهی مناطق فاقد آمار می‌باشد.
مواد و روشها: در این تحقیق مدل GLDAS، با مدل هیدرولوژیکی WMS/HEC-HMS تلفیق شده و از آن به منظور انجام مطالعات بارش– رواناب منطقه پلرود استان گیلان استفاده گردید. در این خصوص از داده‌های مشاهداتی ایستگاه طول‌لات دوره آماری 2005-2003 برای واسنجی و سال 2006 برای صحت‌سنجی از طریق دو روش SMA و SCS به کار برده شد. در این رابطه، برای روش SCS پارامترهای مورد نیاز نظیر شماره منحنی، زمان تاخیر و میزان تلفات توسط نرم افزار مورد واسنجی قرار گرفت. برای روش SMA نیز، پارامترهای ذخیره خاک، نرخ نفوذ خاک، ضریب ذخیره لایه زیرزمینی اول و دوم و سایر پارامترهای مربوطه واسنجی شدند. پس از ارزیابی نتایج مدلGLDAS ، به بررسی داده‌های بارش، رواناب‌های سطحی و زیرسطحی و دما در پیکسل مربوط به ایستگاه هیدرومتری طول-لات، در 10 سال 2013-2004 پرداخته شد. سپس با استفاده از مدل WMS/HEC-HMS رواناب منطقه در مقیاس کل حوضه، با بکارگیری دو روش تلفات SCS و SMA، سال‌های 2009-2004 برای واسنجی ضرایب، و سال‌های 2013-2010 برای صحت‌سنجی شبیه‌سازی شد. نتایج نشان داد که هر دو روش SMA و SCS، در مرحله تلفیق دو مدل HEC-HMS و GLDAS نتایج بهتری را ارائه می‌دهند. ارزیابی نتایج بر اساس معیارهای ضریب تعیین (R2)، ضریب نش- ساتکلیف (E)، خطای Bias، RMSE و درصد خطا نشان داد که تلفیق دو مدل HEC-HMS و GLDAS ابزار مفیدی جهت تخمین رواناب در نقاط فاقد آمار حوضه‌های آبریز خواهد بود.
یافته‌ها: نتایج نشان داد تلفیق دو مدل HEC-HMS و GLDAS در روش تلفات SMA، در سال 2013 (دوره صحت‌سنجی)، با ضریب تعیین 8/0، ضریب نش- ساتکلیف 77/0، معیار خطای 5/1 و 1/6 بهترین عملکرد را دارد. هم‌چنین مدل تلفیقی با در نظر گرفتن روش SCS در سال 2005 (دوره واسنجی) با ضریب تعیین 9/0، ضریب نش- ساتکلیف 86/0، معیار خطای 78/0 و 5/2 بهترین نتایج را ارائه داده است. به طور کلی نتایج این تحقیق بیانگر آن است که عملکرد مدل از طریق هر دو روش تلفات SMA و SCS قابل قبول می‌باشد. همچنین مدل در تخمین سیلاب‌های لحظه‌ای و مقادیر اوج آنها بهتر از جریان‌های غیر سیلابی عمل می‌کند. اگرچه در هر دو مورد، مدل نتایج قابل قبولی داشتند.
نتیجه‌گیری: به طور کلی مدل تلفیقی HEC-HMS و GLDAS ارائه شده در این تحقیق، ابزار قابل قبولی جهت پیش‌بینی رواناب در مناطق فاقد آمار می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Integrated HEC-HMS and GLDAS models to runoff estimate of ungauged area

نویسندگان [English]

  • hadis pakdel khasmakhi 2
  • safar marofi 3
  • majid vazifedoust 4
1 Dept of water Engineering, College of agriculture. BASU
2 M.Sc. Student, Bu-Ali Sina University, Hamedan
3 Full Professor, Bu-Ali Sina University, Hamedan
4 4Assistant Proffesor/ university of guilan
چکیده [English]

Background and objectives: Water resources development, requires frequency water recognition, temporal and spatial water distribution, also detailed assessment of its performance. Yusop et al (2007) used HEC-HMS model for rainfall-runoff modeling in a small watershed in Malaysia and reported the Satisfactory results of both calibration and verification periods (20). Planning in ungauged areas is required providing appropriate data. Thus using satellite data, is one of the methods solving this problem. For this purpose, large-scale models of the earth's surface such as GLDAS, have been updated based on satellite observations, are important tools for providing hydrological parameters. The global coverage of GLDAS, using data of the model have been considered in rainfall-run off studies. GLDAS model to evaluate the components of the water balance and energy changes in the Earth's surface, attempted to produce meteorological and hydrological parameters of high quality in the period 1948-2015. The purpose of this study, presented integrated model to estimated discharge in ungauged data.
Materials and Methods: In this study, the GLDAS model integrated with hydrological model, WMS/HEC-HMS. Integrated model was used in rainfall-runoff studies in Polroud area in Guilan province. In this case, the Tol-lat station observation data was used during 3 years (2003-2005) for calibration and 1 year 2006 for verification through two SMA and SCS methods. In this regard, for the SCS method, model calibrated parameters such as curve number, lag time and initial abstraction. For the SMA method, model calibrated soil storage, soil percolation rate, groundwater 1 storage coefficient, groundwater 2 storage coefficient and other parameters. After evaluating GLDAS results, analyzed the precipitation, surface runoff, subsurface runoff and temperature data in the pixels corresponding to the Tol-lat gauging station along the 10 (2004-2013) years. Then, using WMS/HEC-HMS, simulated runoff in the watershed, using two losses method SCS and SMA, 2004-2009 for coefficient calibration and 2010-2013 for verification. The results indicated that SMA and SCS method offer better results through integrated model. Evaluation based on criteria coefficient of determination (R2), Nash coefficient (E), the standard error of Bias, a root mean square error (RMSE) and Error showed that integrated HEC-HMS and GLDAS models is a useful tool for estimating run off in ungauged watershed.
Results: The results show that integrated HEC-HMS and GLDAS models in SMA losses in 2013 (verification period), with 0.8 coefficient of determination, 0.77 and Nash coefficient, 1.5 RMSE and 6.1 Bias error. The integrated model with SCS method in 2005 (calibration period), with 0.9 coefficient of determination, 0.86 and Nash coefficient, 0.78 RMSE and 2.5 Bias error have highest efficient. Also the model in estimating the flood peak moment is better than the non-flood values. Although in both cases, the model results were acceptable.
Conclusion: The integrated model HEC-HMS and GLDAS presented in this study is an acceptable tool for predicting runoff in inaccessible and ungauged watershed.

کلیدواژه‌ها [English]

  • simulation
  • WMS/HEC-HMS
  • GLDAS
  • Poulrood Basin
1.Demayo, A., and Steel, A. 1996. Data handling and presentation, in hapman, Water Quality Assessments, A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring: London, United Nations educational, Scientific and Cultural Organization, World Health organization, United nations Environment Programme, 2nd edition, Chapter. 10: 511-612.
2.Fangl, H., Beaudoing, H., Rodell, M., Tengl, W., and Vollmer, B. 2009. Global land data assimilation (GLDAS) products, services and application from NASA hydrology data and information services center (HDISC). ASPRS 2009 Annual Conference Baltimore. Maryland March 8-13.
3.Garrote, L., and Bras, R.L. 1995. A distributed model for read-time flood forecasting using digital elevation models. J. Hydrol. 167: 15. 279-306.
4.Gottschalck, J., Meng, J., Rodell, M., and Houser, P. 2005. Analysis of multiple precipitation products and preliminary assessment of their impact on Global Land Data Assimilation System (GLDAS) land surface states. J. Hydrometeorol. 6: 5. 573-598.
5.Inci Tekel, Y., Akgul, S., Dengiz, O., and Akuzum, T. 2006. Estimation of flood discharge for small watershed using SCS curve number and geographical information system. River Basin Flood Manage. J. 20: 527-538.
6.Khodaparast, R., Dastorani, M.T., Vafakhah, M., and Talebi, A. 2009. Evaluation HEC-HMS model to estimate flood flows (Case Study: Mashhad dam). National Conference on Water Crisis in Agriculture and Natural Resources, Rey, ReyUniversity. (In Persian)
7.Lee, J.H., Yoon, K.L., Jeong, S., and Lee, E.T. 2003. Mapping of floodplain boundaries using high spatial resolution DEM. AUTH, The Salonika, Greece, XXX IAHR. Pp: 833-834.
8.Liu, Y.Y., Parinussa, R.M., Dorigo, W.A., De Jeu, R.A.M., Wagner, W., van Dijk, A.I.J.M., McCabe, M.F., and Evans, J.P. 2011. Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrology and Earth System Sciences. 15: 2. 425-436.
9.Moiwo, J.P., Lu, W., and Tao, F. 2012. GRACE, GLDAS and measured groundwater data products show water storage loss in Western Jilin, China. Water Sci. Technol. 65: 9. 1606-1614.
10.Mohammadi Motlagh, R., Jalal Kamali, N., and Jalal Kamali, A. 2013. The Role of the basins participation in the intensity of flooding in the Dalaki basin. J. Irrig. Water Engin.
13: 4. 31-44. (In Persian)
11.Nouri, F., Behmanesh, J., Mohammadnezhad, B.A., and Rezaei, H. 2012. Evaluation and calibration of WMS/HEC-HMS model to estimate flood in the ungauged basin. The fifth conference of watershed management and soil and water resources management. (In Persian)
12.Nouri, F., Behmanesh, J., Mohammadnezhad, B.A., and Rezaei, H. 2013. Evaluation of WMS/HEC-HMS model in flood forecasting of Ghorve watershed. J. Water Soil Cons.
19: 4. 201-209. (In Persian)
13.Parehkar, A., Mousavi, J., and Kamali, B. 2011. Comparison Losse models Green-Ampt and SCS on automatic calibration of hydrologic model HEC-HMS. Fourth Conference on Water Resources Management, Tehran, Amir-KabirUniversity of Technology. (In Persian)
14.Rahimi, M., Saghafian, B., Azadi, M., and Sedghi, H. 2010. Flood forecasting in arid and
semi-arid region using continuous hydrological modeling. World Appl. Sci. J. 10: 6. 645-654. (In Persian)
15.Rodell, M., Houser, P.R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J.K., Walker, J.P., Lohmann, D., and Toll, D. 2004. The Global Land Data Assimilation System. Bulletin of the American Meteorological Society. 85: 3. 381-394.
16.Roy, D., Begam, S., Ghosh, S., and Jana, S. 2013. Calibration and validation of HEC-HMS model for a river basin in eastern India. ARPN J. Engin. Appl. Sci. 8: 1. 40-56.
17.Sabzevari, T., Ardakanian, R., Shamsaee, A., and Talebi, A. 2009. Estimate the flood hydrograph of ungauged basins using HEC-HMS and GIS (Case study: Watershed Kasilian). J. Water Resour. Engin. 2: 1-12. (In Persian)
18.Wang, F., Wang, L., Koike, T.H., Zhou, K., Yang, A., and Li, W. 2011. Evaluation and application of a fine-resolution global data set in a semiarid mesoscale river basin with a distributed biosphere hydrological model. J. Geophysic. Res. 116: 10. 148-227.
19.Yaghoubi, M., and Massah Bavani, A.R. 2013. Sensitivity analysis and comparison of capability of three conceptual models HEC-HMS, HBV and IHACRES in simulating continuous rainfall-runoff in semi-arid basins. J. Earth Space Physics. 40: 2. 153-172.
(In Persian)
20.Yusop, Z. 2007. Runoff characteristics and application of HEC-HMS for modeling stormflow hydrograph in an oil palm catchment. Water Science and Technology. 56: 8. 41-48.