اعتبار سنجی دمای سطح حاصل از تصاویر ماهواره‌ای مودیس و لندست-5 (مطالعه موردی: مزارع گندم دشت مرودشت)

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشگاه بوعلی همدان - دانشکده کشاورزی

2 دانشجو/دانشگاه بوعلی سینا

3 هیات علمی

چکیده

سابقه وهدف: دمای سطح زمین یک متغیر کلیدی در برآورد بیلان انرژی می‌باشد که در بررسی تغییر اقلیم نقش تعیین کننده‌ای دارد. به‌همین دلیل، پایش منطقه‌ای دمای سطح زمین در دهه‌های اخیر مورد مطالعه و تحقیق بسیاری از دانشمندان علوم مختلف قرار گرفته است. در گذشته دمای سطح زمین به‌وسیله ابزار سنجش دما، به‌شیوه زمینی اندازه‌گیری می‌شد که در سطح وسیع مقرون به‌صرفه نمی‌باشد. استفاده از تصاویر ماهواره‌ای برای تخمین دمای سطح، دسترسی به دما در حوزه و منطقه وسیع را آسان‌تر و کم ‌هزینه‌تر نموده است. در این تحقیق محصول دمای سنجنده مودیس (MOD11) مورد ارزیابی قرار گرفت. اما از آن‌جا که به‌دلیل به‌کار بردن ضرایب تصحیحی که ممکن است در ایران پاسخگو نباشد، افزون بر تصاویر سنجنده فوق، تخمین دما با استفاده از تصاویر لندست (TM5) که قدرت مکانی آن از تصاویر مودیس بسیار بالاتر است، نیز مورد آزمون و مطالعه قرار گرفت.
مواد و روش‌ها: برای انجام این پژوهش از دو دسته‌ داده‌های زمینی و ماهواره‌ای استفاده شد. داده‌های دما در 261 نقطه زمینی با استفاده از دماسنج مادون قرمز برداشت گردید. اندازه‌گیری‌های زمینی در 4 سطح گیاه شامل، تاج‌پوشش، میانه، 10 سانتی‌متری از کف و سطح خاک انجام پذیرفت و پس از پردازش‌های لازم داده های مناسب انتخاب گردید. داده‌های ماهواره‌ای، دربرگیرنده 26 تصویر سنجنده مودیس (MOD11 و MOD02) و 2 تصویر Level- 1G لندست-5 است، می‌باشد. منطقه مورد مطالعه مزارع گندم شهرستان مرودشت واقع در استان فارس می‌باشد. پس از انجام تصحیحات لازم، دمای سطح با استفاده از باند حرارتی تصویر لندست-5 محاسبه شد. بعد از تخمین دما از تصاویر لندست-5 و سنجنده مودیس، در نقاط برداشت زمینی اقدام به استخراج دما از تصاویر دمای سطح ماهواره لندست-5 و سنجنده مودیس گردید و سپس رابطه بین داده‌های مشاهده‌ای و تخمین زده شده دمای سطح از تصاویر لندست-5 و سنجنده مودیس استخراج شد. رابطه داده‌های تخمینی با داده‌های برداشت زمینی دما در 4 سطحِ گیاه ‌مورد آزمون قرار گرفت. همچنین، با استفاده از 3 الگوریتم پنجره مجزا، بکر و لی (1990)، پرایس (1984) و یولیوری (1994) دمای سطح در منطقه مورد مطالعه تخمین زده و ضرایب الگوریتم‌های پنجره مجزا برای منطقه مورد مطالعه واسنجی گردید. با استفاده از داده‌های اندازه‌گیری شده دمای سطح، داده‌های تخمین زده شده اعتبارسنجی گردید. در این پژوهش برای تعیین معنی‌داری تفاوت بین جفت داده‌های مشاهده‌ای و تخمینی از آزمون فیشر استفاده شده است.
یافته‌ها: نتایج نشان می‌دهد که دمای سطح تخمین زده شده به‌وسیله ماهواره بیشترین همبستگی را با دمای تاج پوشش گیاهی دارد. بنابراین کلیه محاسبات آماری بر روی دمای تاج‌پوشش گیاه انجام پذیرفت. دمای تخمین‌زده شده به‌وسیله ماهواره لندست و سنجنده مودیس حاکی از بیش برآورد دما با خطای RMSE به‌ترتیب 4/4 و1/7 درجه سلسیوس بود. خطای دمای سطح تخمین زده شده با استفاده از الگوریتم‌های پنجره مجزا بین 5/3 تا9/3 درجه سلسیوس برآورد گردید که بهترین پاسخ را الگوریتم بکر و لی داشت. برای تعیین وجود یا عدم وجود اختلاف معنی‌دار بین داده‌های زمینی و داده‌های تخمین زده شده و به‌دست آمده از الگوریتم‌های محاسبه دما، از آزمون فیشراستفاده گردید که اختلاف معنی‌داری در هیچ‌یک از جفت داده‌ها مشاهده نگردید.
نتیجه‌گیری: استفاده از تصاویر ماهواره‌ای برای مطالعاتی که دما به صورت نسبی در یک منطقه وسیع مقایسه می‌گردد، بسیار کارآمد و مقرون به‌صرفه است ولی برای مطالعات دقیق نقطه‌ای و خرداقلیم در حال حاضر توصیه نمی‌گردد. انتخاب نوع تصاویر ماهواره (لندست یا مودیس) به دقت مورد نیاز برای برآورد پهنه‌ای یا نقطه‌ای دما بستگی دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Validation of Land surface Temperature (LST) from Landsat-5 and MODIS Images (Case study: Wheat fields of Marvdasht Plain)

نویسندگان [English]

  • sabziparvar 1
  • Seyed Mohammad Jafar Nazemosadat 3
1
2
3
چکیده [English]

Background and objectives :Land surface temperature (LST) is a key parameter in estimating energy balance that has determinate role in climate change studies. Various scientists have studied monitoring of LST in recent decades. The land surface temperature, which is measured by means of thermometers for certain points, for large scale basin is not cost effective. Using of satellite images for estimating LST make the estimates easier and more economical than ground measurement. In this study, MODIS land surface temperature (LST) was evaluated. In addition, due to use of correction factors which may not always be available for Iran, land surface temperature estimated by Landsat 5 image,which its spatial resolution is much higher than MODIS, was also evaluated.
Materials and methods: For this study, two groups of data were used: satellite data and in-situ data. Ground measurements were collected from 261 points of a wheat farm in Marvdasht plain located in Fars province. Temperature was measured in four height of wheat including: canopy cover, middle, 10 centimeter from floor and soil surface. After statistical tests, acceptable data were selected for the comparison. In this study, twenty eight satellite images were implemented; including 26 MODIS images (MOD02 & MOD11 product) and 2 level-1G Landsat 5 images. Land surface temperature was estimated from thermal band’s of Landsat 5 images by applying the necessary corrections. After providing land surface temperature (LST) maps, land surface temperature was extracted from LST map (Landsat5 & MODIS) based on the measurement points. Afterward, the equation between the observed data and estimated surface temperatures from Landsat 5 (MODIS images) were obtained. Relationship between estimated and in-situ data was analyzed on four different heights of the wheat. Land surface temperatures were also estimated by three different split–window algorithms from Becker and Li (1990), Price (1984) and Ultivertal (1994) and the coefficients were calibrated. Finally, Fisher test was used to determine significant differences between the observed and the estimated data.
Results: It was found that the estimated temperature by satellite has the best correlations with the plant canopy temperature. Estimated data were evaluated against the in-situ data. Results showed that Landsat and MODIS images overestimated the LST by RMSE of 4.4 oC and 7.1 oC respectively. Error of Estimating LST with split–window algorithms was within the range of 3.5–3.7 degree centigrade. Among the three studied algorithms, Becker and Li (1990) approach showed the best performance (the least error). The significant differences between in-situ data and the satellite estimates were examined by Fisher Test. No significant differences were observed in any of the pairs of data.
Conclusion: For meso-scale and large-scale studies, using satellite images is efficient and economic than the point surface measurements. The choice of satellite images (Landsat or MODIS) is depend on the accuracy which is expected from the study.

کلیدواژه‌ها [English]

  • Land surface temperature
  • Satellite
  • Split–window
  • Fars
  • Wheat
1.Anderson, M.C., Kustas, W.P., Norman, J.M., Hain, C.R., Mecikalski, J.R., Schultz, L., González-Dugo, M.P., Cammalleri, C., d'Urso, G., Pimstein, A., and Gao, F. 2011. Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrology and Earth System Sciences. 15: 1. 223-239.
2.Becker, F., and Li, Z.L. 1990. Towards a local split window method over land surfaces. Remote Sensing. 11: 3. 369-393.
3.Carlson, T. 2007. An overview of the “triangle method” for estimating surface evapotranspiration and soil moisture from satellite imagery. Sensors. 7: 8. 1612-1629.
4.Chaichi, M. 2008. Estimating regional reference evapotranspiration by use of earth statistics and remote sensing techniques, case study: Tehran. Master of Science thesis, Tarbiat Modarres University. (In Persian) 
5.Cheng, J., Liang, S., Dong, L., Ren, B., and Shi, L. 2014. Validation of the moderate-resolution imaging spectroradiometer land surface emissivity products over the Taklimakan Desert. J. Appl. Rem. Sens. 8: 1. 083675-083675.
6.Coll, C., Caselles, V., Galve, J.M., Valor, E., Niclos, R., Sánchez, J.M., and Rivas, R. 2005. Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data. Remote Sensing of Environment. 97: 3. 288-300.
7.Fakharizadeshirazi, E., Nazemosadat, M.J., Fallahshamsi, S.R., and KamgarHaghighi, A.A. 2014. Possibility of estimating wheat canopy temperature by using remote sensing technique, J. Irrig. Engin. Sci. 36: 4. 101-111. (In Persian) 
8.Gillies, R.R., Carlson, T.N., Cui, J., Kustas, W.P., and Humes, K.S. 1997. A verification of the ‘triangle’ method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface radiant temperature. Inter. J. Rem. Sens. 18: 15. 3145-3166.
9.Harlan, S.L., Brazel, A.J., Prashad, L., Stefanov, W.L., and Larsen, L. 2006. Neighborhood microclimates and vulnerability to heat stress. Social Science and Medicine. 63: 11. 2847-2863.
10.Hashemi, S.M., Alavipana, S.K., and Dinarvandi, M. 2013. Evaluate the spatial distribution of land surface temperature in using thermal remote sensing in urban environment, J. Environ. Stud. 39: 1. 81-92. (In Persian)
11.Jin, M.L., Dickinson, R.E., and Zhang, D.L. 2005. The footprint of urban areas on global climate as characterized by MODIS. J. Clim. 18: 10. 1551-1565.
12.Johnson, B.R. 1998. In scene atmospheric compensation: Application to SEBASS data collected at the ARM site, Part I. Aerospace Report ATR-99 (8407).
13.Kerr, Y.H., Lagouarde, J.P., and Imbernon, J. 1992. Accurate land surface temperature retrieval from AVHRR data with use of an improved split window algorithm. Remote Sensing of Environment. 41: 2. 197-209.
14.Lafortezza, R., Carrus, G., Sanesi, G., and Davies, C. 2009. Benefits and well-being perceived by people visiting green spaces in periods of heat stress. Urban Forestry and Urban Greening. 8: 2. 97-108. 
15.Landsat Project Science Office. 2002. Landsat 7 Science Data User’s Handbook. Available online from following website: http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_toc. Html, Goddard Space Flight Center, NASA, Washington, DC.
16.Li, F., Jackson, T.J., Kustas, W.P., Schmugge, T.J., French, A.N., Cosh, M.H., and Bindlish, R. 2004. Deriving land surface temperature from Landsat 5 and 7 during SMEX02/SMACEX. Remote sensing of environment. 92: 4. 521-534.
17.Liu, H., and Weng, Q. 2009. An examination of the effect of landscape pattern, land surface temperature, and socioeconomic conditions on WNV dissemination in Chicago. Environmental Monitoring and Assessment. 159: 1-4. 143-161.
18.Moran, M.S. 2004. Thermal infrared measurement as an indicator of plant ecosystem health. Thermal Remote Sensing in Land Surface Processes. Pp: 257-282.
19.Noori, S., Sanaeenezad, H., and Hasheinia, M. 2010. Estimation of land surface temperature using MODIS images over Mashhad sub basin. The First International Conference on Plant, Water, Soil and Weather Modeling International Center for Science, High Technology and Environmental Sciences. Shahid Bahonar University of Kerman. (In Persian)
20.Price, J.C. 1984. Land surface temperature measurements from the split window channels
of the NOAA 7 Advanced Very High Resolution Radiometer. J. Geophysic. Res. Atm. (1984-2012). 89: 5. 7231-7237.
21.Quan, W., Chen, H., Han, X., Liu, Y., and Ye, C. 2012. A modified Becker’s split-window approach for retrieving land surface temperature from AVHRR and VIRR. Acta Meteorologica Sinica. 26: 229-240.
22.Rahimikhoob, A., Koochakzade, M., Sharifi, F., Valisamani, J., and Behbahani, M.R. 2005. Estimating maximum daily temperature using NOAA satellite images: case study in Oroomieh lake basin, J. Res. Dev. 68: 84-90. (In Persian) 
23.Reisen, W., Lothrop, H., Chiles, R., Madon, M., Cossen, C., Woods, L., Husted, S., Kramer, V., and Edman, J. 2004. West Nile virus in California. Emerging Infectious Diseases.
10: 8. 1369-1378.
24.Rozenstein, O., Qin, Z., Derimian, Y., and Karnieli, A. 2014. Derivation of Land Surface Temperature for Landsat-8 TIRS Using a Split Window Algorithm. Sensors. 14: 4. 5768-5780.
25.Ruiz, M.O., Chaves, L.F., Hamer, G.L., Sun, T., Brown, W.M., Walker, E.D., Haramis, L., Goldberg, T.L., and Kitron, U.D. 2010. Local impact of temperature and precipitation on West Nile virus infection in Culex species mosquitoes in northeast Illinois, USA. Parasites and Vectors. 3: 19.
26.Sobrino, J.A., Jiménez-Muñoz, J.C., and Paolini, L. 2004. Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 90: 4. 434-440.
27.Suh, M.S., Kim, S.H., and Kang, J.H. 2008. A comparative study of algorithms for estimating land surface temperature from MODIS data. 대한원격탐사학회지, 24: 1. 65-78.
28.Trenberth, K.E. 1992. Climate system modeling. Cambridge,UK: Cambridge University Press.
29.Ulivieri, C., Castronuovo, M.M., Francioni, R., and Cardillo, A. 1994. A split window algorithm for estimating land surface temperature from satellites. Advances in Space Research. 14: 3. 59-65.
30.Wan, Z., and Dozier, J. 1996. A generalized split-window algorithm for retrieving
land-surface temperature from space. Geoscience and Remote Sensing, IEEE Transactions on. 34: 4. 892-905.
31.Wan, Z., and Li, Z.L. 1997. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data. Geoscience and Remote Sensing, IEEE Transactions on. 35: 4. 980-996.
32.Wan, Z., Zhang, Y., Zhang, Q., and Li, Z.L. 2002. Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data. Remote Sensing of Environment. 83: 1. 163-180.
33.Wan, Z., Zhang, Y., Li, Z.L., Wang, R., Salomonson, V.V., Yves, A., Bosseno, R., and Hanocq, J.F. 2002. Preliminary estimate of calibration of the moderate resolution imaging spectroradiometer thermal infrared data using Lake Titicaca. Remote Sensing of Environment. 80: 3. 97-515.
34.Wan, Z., Zhang, Y., Zhang, Q., and Li, Z.L. 2004. Quality assessment and validation of the MODIS global land surface temperature. Inter. J. Rem. Sens. 25: 1. 261-274.
35.Wan, Z. 2008. New refinements and validation of the MODIS land-surface temperature/ emissivity products. Remote Sensing of Environment. 112: 1. 59-74.
36.Wan, Z., and Li, Z.L. 2008. Radiance‐based validation of the V5 MODIS land‐surface temperature product. Inter. J. Rem. Sens. 29: 17-18. 5373-5395.
37.Wan, Z. 2014. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sensing of Environment. 140: 36-45.
38.Wang, W., Liang, S., and Meyers, T. 2008. Validating MODIS land surface temperature products using long-term night time ground measurements. Remote Sensing of Environment. 112: 3. 623-635.
39.Watson, K. 1992. Two-temperature method for measuring emissivity. Remote Sensing of Environment. 42: 2. 117-121.
40.Weng, Q. 2009. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS J. Photogram. Rem. Sens. 64: 4. 335-344.
41.Weng, Q., Fu, P., and Gao, F. 2014. Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data. Remote Sensing of Environment. 145: 55-67.