بیشینه سازی تولید انرژی برقابی در سیستم مخازن چند منظوره (سیستم 6 سدی کارون بزرگ)

نوع مقاله : مقاله کامل علمی پژوهشی

نویسنده

عضو هیئت علمی دانشگاه شهید چمران

چکیده

سابقه و هدف: در سیستم‌های منابع آب با مخازن چند منظوره، معمولاً برخی اهداف در تضاد با یکدیگر قرار دارند. یکی از رایج ترین موارد، تقابل هدف برقابی با سایر اهداف تامین آب است. در این شرایط، بالا نگه داشتن تراز حداقل بهره برداری، سبب افزایش ارتفاع آب (هد موثر) و تولید انرژی برقابی بیشتر می‌شود. اما این سیاست بهره برداری، منجر به محدود شدن دامنه تغییرات ذخیره و کاهش حجم فعال مخزن می‌شود که ممکن است با افزایش خسارت در تامین نیازهای پایاب توأم باشد. بر این اساس، یکی از اهداف اصلی در این پژوهش، حداکثر نمودن انرژی برقابی تولیدی در سیستم های پیچیده چند مخزنه و چند هدفه است به طوری که نیازهای پایاب نیز با اعتمادپذیری مورد نظر تامین گردند. جهت نیل به این هدف، تراز بهینه حداقل بهره برداری مخازن برآورد می گردد. در این زمینه می توان به مدلهای ترکیبی بهینه سازی ریاضی کلاسیک و فراکاوشی (1)، مدلهای ترکیبی دو الگوریتم فراکاوشی (4) و مدلهای بهینه سازی چند هدفه (14) اشاره نمود.
مواد و روشها: در این پژوهش، به توسعه یک مدل شبیه سازی- بهینه سازی در حوضه آبریز کارون بزرگ با در نظر گرفتن سیستم 6 سدی وضع موجود پرداخته شده است. در این مدل ترکیبی، بیشینه سازی مجموع انرژی تولیدی در سدهای مخزنی به عنوان تابع هدف تعریف شده است که قیود و محدودیت‌های آن شامل بیلان آب و اعتماد پذیری است. این مدل، قادر به بررسی دقیق جزئیات سیستم منابع آب و اولویت بندی تخصص آب به نیازهای مختلف خواهد بود. در این راستا، مقادیر انرژی برقابی تولید شده با استفاده از الگوریتم ژنتیک و طی یک فرآیند تکامل تدریجی حداکثر شده و انحراف از اعتماد پذیری مطلوب برای تامین نیازهای پایاب نیز با اعمال جریمه در تابع هدف، به طور همزمان کنترل می‌گردد.
یافته‌ها: نتایج نشان داد که سیستم ضمن تامین نیازها با اعتماد پذیری مطلوب 75 درصد، قادر به مجموع تولید انرژی برقابی با میانگین سالانه 18193 گیگاوات ساعت بوده است که بیشترین سهم مربوط به سد کارون 1 با 3483 و کمترین آن مربوط به سد کارون 4 با 2007 گیگا وات ساعت در سال است. علاوه بر آن، شبکه های کشاورزی رودخانه دز و شبکه گرگر بر روی رودخانه گرگر از انشعابات رودخانه کارون، نقاط مرزی بهینه سازی برای تامین حداقل اعتماد پذیری قابل قبول هستند و به عنوان شبکه های بحرانی تامین آب شناسایی شدند.
نتیجه‌گیری: با توجه به این که الگوریتم های فراکاوشی در حالت معمول قادر به پذیرش قید نیستند و بایستی برای اعمال محدودیت ها چاره جویی گردد، تحقیق پیش رو نشان داد که استفاده از اعمال جریمه در تابع هدف متناسب با میزان انحراف از اعتماد پذیری مطلوب (قید) دارای کارایی مطلوب در سیستم های پیچیده است. علاوه بر آن، استفاده از مدل ترکیبی شبیه سازی- بهینه سازی کمک قابل ملاحظه‌ای به وارد کردن جزئیات سیستم منابع آب در مدل شبیه سازی نموده است. این در حالی است که در شرایط استفاده معمول از مدل های بهینه سازی، نیاز به ساده سازی زیاد مساله است.

کلیدواژه‌ها


عنوان مقاله [English]

Maximize the hydropower generation in multi-objective reservoir system (The 6 dam system of Karun)

چکیده [English]

Background and objectives: The multi-objective water resource reservoir systems are generally composed of conflict purposes. In this study, keeping the minimum water level at above elevations increases hydropower generation through the water effective head. However, this operating policy results in decreasing the potential of storage variation and active storage capacity, which may be caused some deficits for meeting downstream demands. Accordingly, one of the major aims in this research is to maximize the hydropower generation in complicated multiple and multi-objective reservoir systems in which the desired reliability is kept to meet downstream demands. To reach this aim, the optimal minimum water level is calculated. In this area of research, it can be pointed to the hybrid optimization model; classical mathematical models and evolutionary algorithms (1), hybrid evolutionary algorithms (4) and the multi-objective optimization model (14).
Materials and Methods: In this research, a simulation-optimization model is developed for the Karun basin included the 6 dams system of the current condition. In this hybrid model, maximizing of the total produced energy is defined as objective function constrained to water balance and reliability. This model is capable to investigate the water resource system in details with allocating priority to different demands. In this way, the hydropower generation is maximized using the genetic algorithm and via evolutionary process, in which desired reliability for meeting demands is kept using penalty in the objective function.
Results: The results indicate that the system reliability for meeting demands is kept in the level of 75% in which the annual average of hydropower energy produced by the system is 18193 GWH. The most portions is related to Karun 1 reservoir with 3483GWH and the less one is related to Karun 4 with 2007 GWH per year. Additionally, agriculture networks of Dez river and Gargar network on Gargar river, that is one of the Karun branches, are the boundary area of the optimization for satisfying minimum acceptable reliability. In other words, these networks have been identified as critical networks for meeting demands.
Conclusion: In the common states, evolutionary algorithms are unable to consider the constraint and should be found a remedy to impose constraints. However, this research showed that using penalty in objective function accordance with the violation values of target reliability makes desired performance in the complicated system. Moreover, applying of the simulation-optimization model helps significantly to input more details of the water resource systems in the simulation model. This is more efficient than applying the single optimization model made simplifying of the problems.
Key words: Hydropower, Genetic algorithm, Multi-objective, Optimization Reservoirs.

کلیدواژه‌ها [English]

  • Hydropower
  • Reservoirs
  • Multi-objective
  • Genetic Algorithm
  • Optimization
1.Ahmadi, M., Bozorg Hadad, O., and Marino, M.A. 2014. Extraction of flexible multi-objective real time reservoir operation rules. Water Resource Management. 28: 131-147.
2.Allen, R.B., and Bridgeman, S.G. 1986. Dynamic programming in hydropower scheduling. Water Resource Planning and Management. 112: 3. 339-353.
3.Chen, L., Mcphee, J., and Yeh, G.W.W. 2007. A diversified multi-objective GA for optimizing reservoir rule curves. Advance in Water Resources. 30: 1082-1093.
4.Chang, J.X., Bai, T., Huang, Q., and Yang, D.W. 2013. Optimization of Water Resource Utilization by PSO-GA. Water Resource Management. 27: 3525-3540.
5.Dariane, A.B., and Momtahen, Sh. 2009. Optimization of multi-reservoir system operation using modified direct search genetic algorithm. Water Resource Planning and Management. 135: 3. 141-148.
6.Erlon, C., and Edson, L. 2005. Solving the commitment problem of hydropower plants via Lagrangnian relaxation and sequential quadratic programming. Computational and Applied Mathematics. 24: 3. 317-341.
7.Fallah-Mehdipour, E., Bozorg Hadad, O., and Marino, M.A. 2011. MOPSO algorithm and its application in multipurpose multi-reservoir operation. Hydro informatics. 13: 4. 794-811.
8.Guo, X., Hu T., Wu, C., Zhang, T., and Lv, Y. 2013. Multi-objective optimization of the proposed multi-reservoir operating policy using improved NSPSO. Water Resource Management. 27: 2137-2153.
9.Hincal, O., Altan-Sakarya, A.B., and Metin Ger, A. 2011. Optimization of multi-reservoir systems by genetic algorithms. Water Resource Management. 25: 1465-1487.
10.Oliveira, R., and Loucks, D. 1997. Operating rules for multi-reservoir systems. Water Resource Research. 33: 4. 839-852.
11.Ostadrahimi, L., Marino, M.A., and Afshar, A. 2012. Multi-reservoir operation rule: multi- swarm PSO based optimization approach. Water Resources Management. 26: 407-427.
12.Palmer, R.N., and Holmes, K.J. 1988. Operational guidance during drought: Expert system approach. Water Resource Planning and Management. 114: 6. 647-666.
13.Randall, D., Houck, M.H., and Wright, J.R. 1990. Drought management of existing water supply system. Water Resource Planning and Management. 116: 1. 1-20.
14.Reis, L.F.R., Walter, G.A., Savic, D., and Chaudry, F.H. 2005. Multi-reservoir operation planning using hybrid genetic algorithm and linear programming (GA-LP): an alternative stochastic approach, Water Resource Management. 19: 831-848.
15.Shourian, M., Mousavi, S.J., and Tahershamsi A. 2008. Basin-wide water resource planning by integrated PSO algorithm and Modsim. Water Resource Management. 22: 1347-1366.
16.Siminovic, S.P., and Marino, M.A. 1980. Reliability programming in reservoir management: 1.single multiple reservoir. Water Resource Research. 16: 5. 844-848.
17.Jalali, M.R., Afshar, A., and Marino, M.A. 2007. Multi-colony ant algorithm for
continuous multi-reservoir operation optimization problem. Water Resource Management. 21: 9. 1429-1447.
18.Jothiprakash, V., Shanthi, G., and Arunkumar, R. 2011. Development of operational policy for a multi-reservoir system in India using genetic algorithm. Water Resource Management. 25: 2405-2423.
 
19.Karamouz, M., and Houck, M.H. 1987. Comparison of stochastic and deterministic dynamic programming for reservoir operating rule generation, Water Resource Bulletin. 23: 1. 1-9.
20.Louati, M.H., Benabdalesh, S., Lebadi, F., and Milutin, D. 2011. Application of a genetic algorithm for the optimization of a complex reservoir system in Tunisia. Water Resource Management. 25: 2387-2404.
21.Madadgar, S., and Afshar, A. 2009. An improved continuous ant algorithm for optimization of water resources problems. Water Resource Management. 23: 2119-2139.
22.Taghian, M., Rosbjerg, D., Haghighi, A., and Madsen, H. 2014. Optimization of conventional rule curve coupled with hedging rule for reservoir operation. Water Resource Planning and Management. 140: 3. 365-374.
23.Water Resource Development and Iran Power Company 2010. Water resource management and planning report, Karun 2 dam. (In Persian)