بررسی اثر زاویه برخورد جت مستطیلی به پرش هیدرولیکی

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجویی دکتری دانشگاه فردوسی مشهد

2 دانشیار گروه مهندسی آب ،دانشکده کشاورزی ، دانشگاه فردوسی مشهد

چکیده

سابقه و هدف: یکی ازروش‌های معمول استهلاک انرژی درجریان‌های فوق بحرانی بهره جستن ازپدیده‌ی پرش هیدرولیکی می‌باشد .پرش هیدرولیکی ازنوع جریان‌های متغیرسریع است که درصورت مناسب بودن شرایط کانال در پایین دست جریان ازحالت فوق بحرانی به زیربحرانی تغییرمی‌یابد و با استهلاک انرژی قابل توجهی همراه است. در این پژوهش شیوه جدیدی به منظور کاهش اعماق مزدوج و طول پرش پیشنهاد شده است که در آن از ویژگی‌های یک جت مستطیلی آزاد سریع برای تاثیر گذاری برخصوصیات پرش استفاده گردیده است. برخورد جت سریع به پرش و انتقال اندازه حرکت به آن خصوصیات و موقعیت پرش را تحت تاثیر قرار می‌دهد.
مواد و روش‌ها: در این راستا یک مطالعه آزمایشگاهی با مجموعه‌ای از آزمایش‌ها در یک کانال با جداره‌های تمام شیشه‌ای به عرض30 سانتی‌متر و به طول 12 متر و ارتفاع50 سانتی‌مترانجام گرفت وجهت تثبیت موقعیت پرش، از یک دریچه قابل کنترل در پاییندست کانال استفاده گردید. عمق جریان در طول کانال به دو روش مستقیم وغیر مستقیم اندازه‌گیری شد. در روش غیر مستقیم با نصب پیزومترهایی در کف کانال و قرائت ارتفاع پیزومترها به کمک دوربینی با قدرت وضوح بالا و سپس استفاده از نرم افزار گرافر عمق جریان اندازه‌گیری شد. بمنظور بررسی تاثیر دبی و زاویه جت بر روی مشخصات پرش هیدرولیکی از سه دبی 2، 5/2 و2/3 لیتر بر ثانیه برای جت و چهار زاویه برای راستای افقی جت شامل ‌‌60 درجه، 90 درجه، زاویه‌ی با حداکثر جابجایی ابتدای پرش و زاویه‌ی بدون تغییر ابتدای پرش استفاده شد.
یافته‌ها: نتایج آزمایشگاهی نشان داد، پرش هیدرولیکی برای یک زاویه مشخص جت هیچ‌گونه جابجایی ندارد که این زاویه به عنوان زاویه بی اثر نامگذاری شد. با افزایش زاویه جت، پرش به سمت بالادست حرکت کرد و از یک زاویه به بعد پرش هیچ گونه حرکتی به سمت بالادست نداشت که این زاویه نیز به عنوان حداکثر زاویه جابجای پرش نامگذاری گردید. تغییر زاویه و دبی جت موجب کاهش یا افزایش عمق ثانویه، طول پرش، افت انرژی نسبی و نیروی برشی بستر شد. استفاده از جتی با حداکثر زاویه و دبی2/3 لیتر بر ثانیه در کمترین عدد فرود جریان، موجب کاهشی تا حدود 4/25 درصد در نسبت عمق ثانویه گردید. بکارگیری جتی با زاویه 60 درجه و دبی 2/3 لیتر بر ثانیه در بیشترین عدد فرود جریان موجب افزایش 7/8 درصدی نسبت عمق ثانویه شد. حداکثر میزان کاهش طول پرش (3/48 درصد) زمانی رخ داد که از جتی با حداکثر زاویه و دبی 2/3 لیتر بر ثانیه در شرایط کمترین عدد فرود جریان استفاده گردید. حداکثر میزان افزایش طول پرش(7/15درصد) نیز مربوط به استفاده از جتی با زاویه 60 درجه و دبی 2/3 لیتر بر ثانیه در بیشترین عدد فرود بود. زمانی که از جتی با حداکثر زاویه و دبی2/3 لیتر بر ثانیه در شرایط کمترین عدد فرود استفاده گردید، افت انرژی نسبی تا حدود 97/13 درصد افزایش یافت و نهایتاً بکارگیری جتی با زاویه 60 و 90 درجه به ترتیب موجب کاهش و افزایش نیروی‌های برشی کف شد.
نتیجه‌گیری: وارد کردن جت به پرش با زاویه‌ای بزرگتر از زاویه‌ی بی‌اثر باعث کاهش نسبت اعماق مزدوج، طول پرش و افزایش افت انرژی و نیروهای برشی کف می‌گردد.

کلیدواژه‌ها


عنوان مقاله [English]

The impact of water jet angle on the characteristics of hydraulic jump

نویسندگان [English]

  • mehdi dastourani 1
  • Kazem Esmaili 2
  • Saeed Reza Khodashenas 2
1
2 Associate Professor, Department of Water Engineering, College of Agriculture, Ferdowsi university of mashhad
چکیده [English]

Background and Objectives : Hydraulic jump is one of the common methods of dissipation of energy of the super-critical flows in open channels. This phenomenon is a kind of rapid, varied flow that exists when the super - critical state of of flow converts to the sub-critical state. It causes to considerable dissipation in value of the energy. In this research a new method introduced for decreasing both values of the conjugate depths and the hydraulic jump's length. This method was based on using the specifications of a rectangular free-jet for affecting to the jump features. In fact, fast impact of the jet into the jump and shifting the momentum value to it, affected the jump's specifications and situation.
Material and methods : This research was an experimental study.The experimental setup was including the flume with the walls of the glass materials in the dimensions of the 1200*30*50 cube centimeter. A contorl gate used to fixing the situation of the jump, in the downstream of the flow. The depth of the flow measured by two methods of direct and indirect named. Indirect method included installing the piezometers in the flume bed and reading the heigth of the water column in the piezometers by a camera with a high resolution.Then it measured by a plotter of the flow’s depth software.In order to the investigation of the effect of the discharge and jet angle on the jump’s specifications, the tests performed in various conditions. These conditions include of the three different jet’s discharges of 2, 2.5 and 3.2 litre per second, the jet’s angles of 60 and 90 degree versus the horizontal direction and two specific angles that their direction considered toward the maximum displacement from the beginning point of the jump direction and without any displacement and change at the beginning point of the jump direction.
Findings : The hydraulic jump at a special jet angle had not any displacement that this angle was named as the neutral angle. As the jet’s angle increased, the jump moved toward the upstream until the angel reached to the extent with no movement of the jet to the upstream, this angle called as the maximum angle of the jump displacement. Change in the angle and discharge of the jet resulted in changes in the secondary depth, jet length, relative energy loss and bed shear stress. At the maximum angle of the 60 degrees, and the discharge equal to the 3.2 liter per second in the minimum Froude number, the secondary depth ratio increased by 25.4 percent. Using a jet with the angle of the 60 degrees and the discharge of the 3.2 liter per second in the maximum Froud number of the flow caused the increasing in the secondary depth ratio by 8.7 percent. The maximum reduction in the jet length (e.g.48.3 percent) occurred at the maximum jet angle and discharge equal to the 3.2 liter per second in the minimum Froude number. The maximum increasing in the jet length (e.g.15.7 percent) happened in the angle of the 60 degrees, discharge about 3.2 liter/s and the maximum Froude number. In the maximum angle of the jet, discharge about 3.2 liter/s and minimum Froude number, the relative energy loss, increased about 13.9 percent and finally using the jet’s angel equal to the 60 and 90 degrees caused decreasing and increasing of the bed shear stresses , respectively.
Conclusion: Applying the jet to the jump with an angle greater than ineffective angle caused decreases in the secondary depths ratio and jump length while increasing in the energy loss and bed shear forces

کلیدواژه‌ها [English]

  • Key words: hydraulic jump
  • Free rectangular jet
  • supper critical flow
  • energy dissipation
1.Abbaspour, A., Hosseinzadeh Dalir, A., Farsadizadeh, D., and Sadraddini, A.A. 2009.
Effect of Sinusoidal Corrugated Bed on Hydraulic Jump Characteristics. J. Water Soil Sci. 19: 1. 13-26. (In Persian)
2.Ahmadi, A., and Honar, T. 2015. Assessing Effect of End Sill with Different Forms on Hydraulic Jump Characteristics. J. Sci. Echnol. Agric. Natur. Resour. Water and Soil Science. 18: 70. 135-145. (In Persian)
3.Belanger, J.B. 1828. Essai Sur la Solution Numériaue de Quelques Problémes Relatifs au Mouvement Permanent des Eaux Courantes. Carulian-Goeury, Paris, France. (In French) 
4.Ead, S.A., and Rajaratnam, N. 2002. Hydraulic jumps on corrugated beds. J. Hydr. Engin. ASCE. 128: 656-663.
5.Gohari, A., and Farhoudi, J. 2009. The characteristics of hydraulic jump on rough bed stilling basins. 33rd IAHR Congress, Water Engineering for a Sustainable Environment, Vancouver, British Columbia, August 9-14.5.
6.Jam, M., Mardasht, A., and Talebbeydokhti, N. 2015. Evaluation of Hydraulic Jump on Dentate Blocks Stilling Basin. J. Hydr. 9: 1. 1-10. (In Persian)
7.Mohamad, A.H.S. 1991. Effect of roughened-bed stilling basin on length of rectangular hydraulic jump. J. Hydr. Engin. ASCE. 117: 83-93.
8.Najandali, A., Esmaili, K., and Farhoudi, J. 2012. The Effect of Triangular Blocks on the Characteristics of Hydraulic Jump. J. Water Soil. 26: 2. 282-289. (In Persian)
9.Neisi, K., Shafai Bejestan, M., Ghomshi, M., and Kashefipoor, S.M. 2014. Investigation of Hydraulic Jump Characteristics at Roughened Bed of Sudden Expansion Stilling Basin. J. Irrig. Sci. Engin. 37: 2. 83-93. (In Persian)
10.Parsamehr, P., Farsadizadeh, D., and Hosseinzadeh Dalir, A. 2013. Influence of Sill and Artificial Roughness over Adverse Bed Slopes on Hydraulic Jump Characteristics. J. Water Soil. 27: 3. 581-591.
11.Rajaratnam, N. 1968. Hydraulic jumps on rough beds. Trans. Eng. Inst. Canada, 11: 2. 1-8.
12.Shafai-Bajestan, M., and Neisi, K. 2009. A New Roughened Bed Hydraulic Jump Stilling Basin. J. Appl. Sci. 2: 1. 436-445. 
13.Silvester, R. 1964. Hydraulic jump in all shapes or horizontal channels. Proceeding of the American Society of Civil Engineering. J. Hydr. Div. 90: 23-23.
14.Toozandehjani, M., and Kashefipour, M. 2013.Laboratory Investigation of the Effect of Diversion Dam Underflow on the Hydraulic Jump Characteristics. J. Sci. Technol. Agric. Natur. Resour. Water and Soil Science. 16: 62. 205-216. (In Persian)
15.Valinia, M., Ayyoubzadeh, A., and Yasi, M. 2014. An experimental study of the effect of baffle blocks distance from a gate on the hydraulic jump length and energy dissipation. J. Water Soil Resour. Cons. 3: 3. 1-10. (In Persian)
16.Varol, F.A., Ҫevik, E., and Yüksel, Y. 2009. The Effect of Water Jet on the Hydraulic Jump. Thirteenth International Water Technology Conference, IWTC 13 2009, Hurghada, Egypt.
17.YüKSEL, Y., Günal, M., Bostan, T., Ҫevik, E., and Ҫelikoǧlu, Y. 2004. The Influence of Impinging Jets on Hydraulic Jumps. Process of the Institution of Civil Engineering, Water Management 157, WM2, 63-76.