بررسی حرکت آب از مسیرهای ترجیحی خاک با استفاده از مدل توسعه داده شده کینماتیک، انتشار- وان‌گنوختن: مطالعه با روش بهینه‌سازی سراسری

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکترای آبیاری و زهکشی دانشگاه شهید چمران اهواز

2 استاد دانشکده مهندسی علوم آب، گروه آبیاری و زهکشی دانشگاه شهید چمران اهواز

3 استادیار گروه مهندسی آب، دانشکده علوم کشاورزی دانشگاه گیلان

چکیده

چکیده
سابقه و هدف: امروزه مشکل آلودگی آب و خاک یکی از عوامل تهدیدکننده پایداری تولیدات کشاورزی و حیات انسان و سایر موجودات زنده است. همچنین جریان ترجیحی آب و املاح، یکی از فرآیند‌های معمولی در خاک‌های اشباع و غیراشباع می باشد که به طور معمول سبب حرکت سریع آلاینده‌ها و در نتیجه آلودگی آب‌های زیرزمینی می شود. از این روی مدل‌های ریاضی به طور گسترده‌ای در فیزیک خاک و هیدرولوژی برای پیش بینی حرکت جریان‌های ترجیحی آب و آلاینده‌ها در نواحی غیراشباع خاک استفاده می‌شوند. جریان‌های ترجیحی حاصل حرکت آب از خلل و فرج درشت خاک، مانند سوراخ و کانال‌های زیرزمینی هستند که با فعالیت کرم‌ها و یا رشد ریشه گیاهان به وجود می‌آیند و سبب انتقال سریع آب و آلاینده‌ها به آب‌های زیر زمینی و درنتیجه آلودگی آنها می شوند. برای پیش‌بینی روند و توضیح این نوع جریان‌ها در خاک، در اینجا مدل ریاضی توسعه یافته موج کینماتیک، انتشار- وان‌گنوختن (KDW-VG) که حاصل نوآوری این پژوهش می‌باشد، معرفی می‌شود.
مواد و روش‌ها: در این پژوهش آزمایش‌ها به صورت چهار بارندگی با شدت‌های 97/56، 64/107، 01/133 و 71/161 میلی‌متر بر ساعت که بر یک ستون خاک می بارید انجام شد و شدت آب خروجی از انتهای ستون خاک در مقابل رطوبت متحرک کل ستون ثبت می‌شد. ضرایب مدل با کمینه کردن تابع خطای بین مقادیر مشاهداتی آزمایش و معادله پیش بینی شدت جریان با روش بهینه‌سازی سراسری تراکم ذرات (PSO) تعیین شدند. برای رسیدن به بهترین نتایج و کمینه‌ترین مقادیر تابع خطا، راهکارهای زیادی آزمون شد و مقادیر مختلفی برای c1 و c2 که به ترتیب ضرایب فردی و اجتماعی الگوریتم بهینه‌سازی هستند و در ایجاد نسل‌های بعدی پاسخ‌های پیشنهادی الگوریتم دخالت دارند، انتخاب و امتحان شد و همچنین معادله‌های مختلفی به عنوان وزن اینرسی، wکه برای کنترل سرعت حرکت ذرات یا پاسخ‌ها در فضای جستجو به کار می رود، امتحان شد.
یافته‌ها: پس از به کار بردن مقادیر مختلفی برای c1 و c2، سرانجام مقادیر 2/1 و4/2 به ترتیب برای c1 و c2 منجر به بهترین پاسخ‌ها یعنی کمترین مقدار تابع خطا شدند. همچنین برای بهینه‌سازی، پس از بررسی نتایج معادله‌های مختلف، سرانجام از رابطه وزن اینرسی کاهش یابنده خطی برای تعیین وزن اینرسی که توسط زین و همکاران در سال 2009 ارائه شد، استفاده گردید (31). همچنین با توجه به نتایج، در همه شدت‌های بارندگی، الگوریتم بهینه‌سازی پس از حدود 3500 تلاش و ایجاد نسل‌های متوالی به بهترین پاسخ دست یافت.
نتیجه گیری: به طور کلی نتایج نشان داد که الگوریتم به کار رفته توانسته‌است در مدت زمان کوتاه و با دقت قابل قبولی ضرایب مدل عددی کینماتیک، انتشار- وان‌گنوختن را تعیین نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of preferential water flow in soil using developed kinematic dispersive wave- van Genuchten model: Study with global optimization analysis

نویسندگان [English]

  • Mostafa Moradzadeh 1
  • Saeed Boroomandnasab 2
  • Hadi Moazed 2
  • Mohammadreza Khaledian 3
1 Ph.D. Student, Dept. of Irrigation and Drainage Engineering, Shahid Chamran University of Ahvaz.
2 Professor at Faculty of Water Sciences Engineering, Shahid Chamran University of Ahvaz, Khuzestan, Iran
3 Asistant Professor at Faculty of Agricultural Sciences, Department of Water Engineering, University of Guilan, Rasht, Guilan, Iran
چکیده [English]

Abstract
Background and objectives: These days the problem of water and soil pollution is one of the factors threatening the sustainability of agricultural production and human’s life and other living things. Also, preferential flow of water and solute is a common phenomenon in the natural saturated and unsaturated soil which generally results in fast contaminant transport and thus greatly increases the risk of groundwater contamination. So mathematical models are widely used in soil physics and hydrology for predicting preferential water flow and contaminants transport through the unsaturated zone. Preferential flow which is the cause of water transport in soil macropores such as underground channels formed by worm activity and root plants growth, is the reason of rapid water and contaminants transport to ground water and its contamination. For process predicting and describing of these types of water flow in soil, in this research the kinematic dispersive wave- van Genuchten model is introduced which is the innovation of this research.
Materials and methods: In this research, the experiments were conducted with four different rainfall intensities of 56.97, 107.64, 133.01 and 161.71 mm h-1, which were applied on the surface of a soil column and output water fluxes from the bottom of soil column and mobile water content of whole soil column were recorded. Model coefficients were calculated by minimizing the error function between the observed values and something modeled by equation using particle swarm optimization (PSO) method. To achieve the best results and the minimum amount of error function, several solutions were tried and different values for c1 and c2 which are the learning factors (weights) or acceleration coefficients of optimization algorithm which interfere to make the next algorithm results and control the personal and global best respectively, were tried and chosen and also several equations as the inertia weight, w which used to control the particles/results velocities in the search spaces, were tried.
Results: After applying several amounts for c1 and c2, finally the amount of 1.2 and 2.4 for c1 and c2 respectively, leads to best results and lowest error function. Also for the optimization, after reviewing the results of several different equations, the linear decreasing inertia weight equation which was presented by Xin et al., in 2009 was chosen (31). Based on results, in all rainfall intensities, optimization algorithm could find the best results after 3500 iteration and making frequent generation.
Conclusion: Generally the results have shown that the used algorithm could define the coefficients of kinematic dispersive wave- van Genuchten model in a short time and with reasonable accuracy.

کلیدواژه‌ها [English]

  • Particle swarm optimization
  • Porous media
  • Contaminant transport
  • Artificial preferential pathways
  • Numerical model
1.Abbasi, F., Javaux, M., Vanclooster, M., and Feyen, J. 2012. Estimating hysteresis in the soil water retention curve from monolith experiments. Geoderma. 189-190: 480-490.
2.Alaoui, A. 2015. Modelling susceptibility of grassland soil to macropore flow. J. Hydrol.
525: 536-546.
3.Chen, C., and Wagenet, R.J. 1992. Simulation of water and chemicals in macropore
soils: representation of the macropore influence and its effect on soil water flow. J. Hydrol. 130: 105-126.
4.Coppola, A., Dragonetti, G., Comegna, A., Lamaddalena, N., Caushi, B., Haikal, M.A., and Basile, A. 2013. Measuring and modeling water content in stony soils. Soil & Tillage Research. 128: 9-22.
5.Di Pietro, L., Ruy, S., and Capowiez, Y. 2003. Predicting water flow in soils by traveling-dispersive waves. J. Hydrol. 278: 1-4. 64-75.
6.Eberhart, R.C., and Kennedy, J. 1995. A new optimizer using particle swarm theory. 6th Int. Symp. Micro Machine and Human Science, Nagoya, Japan, Pp: 39-43.
7.Flury, M. 1996. Experimental evidence of transport of pesticides through field soils – a review. J. Environ. Qual. 25: 25-45.
8.Gallage, C., Kodikara, J., and Uchimura, T. 2013. Laboratory measurement of hydraulic conductivity functions of two unsaturated sandy soils during drying and wetting processes. Soils and Foundations. 53: 3. 417-430. 
9.Germann, P.F. 1985. Kinematic wave approximation to infiltration and drainage into and from soil macropores. Transactions ASAE. 28: 745-749.
10.Germann, P.F. 1990. Preferential flow and the generation of runoff: boundary layer flow theory. Water Resources Research. 26: 12. 3055-3063. 
 
11.Germann, P.F., Di Pietro, L., and Singh, V. 1997. Momentum of flow in soils assessed with TDR-moisture readings. Geoderma. 80: 153-168.
12.Hardie, M.A., Lisson, S., Doyle, R.B., and Cotching, W.E. 2013 b. Evaluation of rapid approaches for determining the soil water retention function and saturated hydraulic conductivity in a hydrologically complex soil. Soil & Tillage Research. 130: 99-108.
13.Jamalian, A., Fathali, J., and Nezakati, A. 2010. Location problems with Push-Pull objectyives. M.Sc. thesis, applied mathematic. ShahroodUniversity of technology, faculty of mathematics. (In Persian)
14.Jianzhi, N., Xinxiao, Y., and Zhiqiang, Z. 2007. Soil preferential flow in the dark coniferous forest of Gongga Mountain based on the kinetic wave model with dispersion wave (KDW preferential flow model). Acta Ecologica Sinica. 27: 9. 3541-3555.
15.Kennedy, J., and Eberhart, R.C. 1995. Particle Swarm Optimization. IEEE International Conference on Neural Networks, Perth, Australia, IEEEServiceCenter, Piscataway, NJ.
IV: 1942-1948.
16.Khitrov, N.B., Zeiliger, A.M., Goryutkina, N.V., Omel’chenko, N.P., Nikitina, N.S., and Utkaeva, V.F. 2005. Preferential Water Flows in an Ordinary Chernozem of the Azov Plain. Eurasian Soil Science. 42: 7. 757-768.
17.Koestel, J., and Jorda, H. 2014. What determines the strength of preferential flow in undisturbed soil under steady-state conditions? Geoderma. 217-218: 144-160.
18.Majdalani, M., Angulo-Jaramillo, R., and Di Pietro, L. 2008. Estimating preferential water flow parameters using a binary genetic algorithm inverse method. Environmental Modelling & Software. 23: 950-956.
19.Mdaghri-Alaoui, A. 1998. Transferts d’eau et de substances (bromures, chlorures et bactériophages) dans des milieux non saturés à porosité bimodale: expérimentation et modélisation. PhD Thesis, Soil Science Section, Institute of Geography, University of Berne, Switzerland.
20.Merrikh Bayat, F. 2012. Optimization algorithms inspired by nature. Nas Press.
(In Persian)
21.Nielsen, D.R., and Biggar, Y.W. 1961. Measuringcapillaryconductivity. Soil Science.
92: 192-193. 
22.O'Kelly, B.C., and Sivakumar, V. 2014. Water content determinations for peat and other organic soils using the oven-drying method. Drying Technology. 32: 6. 631-643.
23.Poulovassilis, A. 1969. The effect of hysteresis of pore-water on the hydraulic conductivity. (Department of Agricultural Chemistry, School of Agriculture, Athens). J. Soil Sci.
20: 1. 52-56.
24.Rauch, W., and Harremoes, P. 1999. On the potential of genetic algorithms in urban drainage modeling. Urban Water. 1: 1. 79-89.
25.Snehota, M., Jelinkova, V., Sacha, J., Frycova, M., Cislerova, M., Vontobel, P., and Hovind, J. 2015. Experimental Investigation of Preferential Flow in a Near-saturated Intact Soil Sample. Physics Procedia. 69: 496-502.
26.Tahouni, S. 2007. Principle of geotechnical engineering. Vol. 1, Soil mechanic, Pars Aeen Publications, 11th edition.
27.van Genuchten, M.Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Amer. J. 44: 5. 892-898. 
28.Venkatramaiah, C. 2006. Geotechnical engineering. New age international publisher. Third edition.
29.Wang, Y., Bradford, S.A., and Šimůnek, J. 2013a. Transport and fate of microorganisms in soils with preferential flow under different solution chemistry conditions. Water Resources Research. 49: 5. 2424-2436.   
30.Wang, Y., Bradford, S.A., and Simunek, J. 2013 b. Physical and Chemical Factors Influencing the Transport and Fate of 4 E. coli D21g in Soils with Preferential Flow. Vadose Zone Journal Accepted paper. doi:10.2136/vzj2013.07.0120.
31.Xin, J., Chen, G., and Hai, Y. 2009. A Particle Swarm Optimizer with Multistage Linearly-Decreasing Inertia Weight. In Computational Sciences and Optimization CSO. International Joint Conference, 1: 505-508. IEEE. 
32.Youngs, E.G. 1964. An infiltration method of measuring the hydraulic conductivity of unsaturated porous materials. Soil Science. 97: 5. 307-311.
33.Zhang, Z.B., Peng, X., Zhou, H., Lin, H., and Sun, H. 2015. Characterizing preferential flow in cracked paddy soils using computed tomography and breakthrough curve. Soil and Tillage Research. 146: 53-65.