آنالیز سطوح روند و اثرات آن در مدل‌سازی تغییرنما و پهنه‌بندی برخی ویژگی‌های خاک

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجو

2 هیئت علمی دانشگاه شهرکرد

3 هیئت علمی

4 هیئت علمی دانشگاه ارومیه

چکیده

سابقه و هدف: دقت برآورد مکانی ویژگی‌های خاک نظیر رس، ماده آلی و کربنات کلسیم معادل اهمیت زیادی در تغذیه گیاه و برنامه‌ریزی‌های زیست محیطی دارد. مهم‌ترین مرحله قبل از تحلیل‌های آماری و به‌کارگیری تخمین‌گرهای زمین‌آماری، وارسی داده‌ها می‌باشد. افزون بر بررسی اعداد پرت و نوع توزیع داده‌ها، یکی دیگر از عملیات مهم در مطالعات زمین‌آماری، آنالیز روند سطحی است. با به‌کارگیری تحلیل روند سطحی می‌توان نقش عواملی چون تغییر جنس سنگ‌ها، آب و هوا، توپوگرافی و به‌طورکلی ناهنجارهای منطقه‌ای را روی داده‌ها ارزیابی کرد (19). هدف از این پژوهش، آنالیز سطوح روند و اثرات آن در مدل‌سازی تغییرنما و پهنه‌بندی رس، ماده آلی و کربنات کلسیم معادل خاک بود.
مواد و روش‌ها: بدین‌‌منظور، تعداد 100 نمونه خاک سطحی (عمق صفر تا 15 سانتی‌متری) به‌صورت تصادفی براساس مساحت طبقات متفاوت شیب، منطقه‌ای به مساحت 41353 هکتار از اراضی زراعی دشت سئلین واقع در منطقه کلیبر، استان آذربایجان‌شرقی برداشت گردید. ویژگی‌های خاک شامل بافت خاک به روش هیدرومتری، کربنات کلسیم معادل خاک به روش تیتراسیون برگشتی و درصد کربن آلی خاک به روش اکسایش‌تر اندازه‌گیری شدند. برای تحلیل روند سطحی از رگرسیون چندگانه که در آن متغیرهای مستقل، مختصات جغرافیایی نقاط و متغیر وابسته یک نوع ویژگی از خاک می‌باشد و برای پهنه‌بندی رس، ماده آلی و کربنات کلسیم معادل خاک و باقی‌مانده‌ها حاصل از حذف روند سطحی از کریجینگ معمولی استفاده شد. به منظور ارزیابی اثر سطوح روند در مدل-سازی تغییرنما و تخمین‌گر کریجینگ از روش اعتبار سنجی متقاطع با شاخص‌های خطای میانگین (ME)، ریشه میانگین مربعات خطا (RMSE) و ضریب تبیین (R2) استفاده شد.
یافته‌ها: آنالیز روند سطحی نشان داد که بهترین مدل رگرسیونی برای تبیین روند در رس و کربنات کلسیم معادل، درجه یک و برای ماده آلی، کوادراتیک بود. با حذف روند، اثرقطعه‌‌ای تغییرنما تقریباً برابر اثرقطعه‌ای در حضور روند گردید اما، حدآستانه تغییرنما کاهش یافت. به‌هرحال، تفاوت قابل ملاحظه‌ای بین دقت تخمین‌گر کریجینگ در شرایط حضور و حذف روند مشاهده نگردید. این امر می‌تواند ناشی از ناهنجارهای محیطی و فعالیت‌های انسانی باشد، به‌طوری‌که مدل‌های رگرسیونی تبیین کننده روند فقط 35، 18 و 21 درصد از تغییرات به‌ترتیب رس، ماده آلی و کربنات کلسیم معادل را توجیه کردند. بااین‌حال، با حذف روند R2 در ویژگی‌های رس، ماده آلی و کربنات کلسیم معادل به‌ترتیب 1/9، 7/2 و 6/6 درصد افزایش یافت.
نتیجه‌گیری: به‌طور کلی، بررسی روند سطحی در مطالعات خا‌ک‌شناسی که سروکار بیشتر با داده‌های مکانی است، توصیه می‌گردد. به دلیل اینکه حضور روند بستگی به شرایط و موقعیت منطقه مطالعاتی و همچنین، منبع ایجاد روند دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Trend surface analysis and its effects on variogram modeling and mapping of some soil properties

چکیده [English]

Background and objectives: Accuracy of spatial estimation of soil properties such as clay, organic matter and calcium carbonate equivalent is very important in plant nutrition and environmental planning. The most important step before statistical analysis and using geostatistical estimators is data check. In addition to investigation of outlier data and data distribution, another important action in geostatistical studies is trend surface analysis. Analyzing trend surface can evaluate the role of factors such as stone kin, climate, topography and generally regional anomalies. The objective of this study was trend-surface analysis and its effects on variogram modeling and mapping of clay, organic matter and calcium carbonate equivalent.
Materials and Methods: For this purpose, 100 surface soil samples in 0-15 cm depth were selected randomly based on different classes area slope from 41353 ha area in Selin plain farmland located in Kaleibar region, East-Azerbaijan. Soil properties such as clay, calcium carbonate equivalent and organic matter were measured by hydrometer, return titration and wet oxidation method, respectively. For analyzing trend surface used multiple regression models which its independent variables was geographical coordinate and dependent variable was a soil properties. For zoning clay, organic matter and calcium carbonate equivalent and residuals of removing trend used ordinary kriging. The effect of removing trend surface in variogram modeling and kriging estimating were evaluated by cross-validation method with indexes mean error (ME), root mean square error (RMSE) and determination coefficient (R2).
Results: Trend surface analysis showed that the best regression models for trend determination of clay, calcium carbonate equivalent and organic matter were first order, first order and quadratic, respectively. Removing the detected trend led to decrease in sill but the nugget effect did not changed. However, no significant difference was observed between accuracy of kriging estimator in presence and remove of trend. This can be attributed to the fact that both abnormal manner of environment and activations of human. So that, the regression models of the trends were 35, 18 and 21% of clay, organic matter and calcium carbonate equivalent variations, respectively. However, removing the detected trend led to increase 9.1, 2.7 and 6.6% of R2 for clay, organic matter and calcium carbonate equivalent, respectively.
Conclusion: generally, investigation of trend surface recommended in soil studies that is more deals to spatial data. Because the trend depends on the location and conditions of the study area as well, the source of the creating trend trend trend trend trend.

کلیدواژه‌ها [English]

  • Surface trend
  • Nugget effect
  • Kriging
1.Allison, L.E., and Moodie, C.D. 1965. Carbonate, P 1379-1400, In: C.A. Black et al. (Eds.), Methods of Soil Analysis. Part 2. Chemical Methods. 2nd ed. Agron. Monogr. 9. ASA, CSSA, and SSSA, Madison, WI.
2.Cambardella, C.A., Moorman, T.B., Novak, J.M., Parkin, T.B., Turco, R.F., and Konopka, A.E. 1994. Field-scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Amer. J. 58: 1501-1511.
3.Chiang, L.H., Pell, R.J., and Seasholtz, M.B. 2003. Exploring process data with the use of robust outlier detection algorithms. J. Proc. Con. 13: 437-449.
4.Daempanah, R., Haghnia, G.H., Alizadeh, A., and Karimi, A. 2011. Mapping Salinity and Sodicity of Surface Soil by Remote Sensing and Geostatistic Methods in South Side of MahValat County. J. Water Soil. 25: 30. 498-508. (In Persian)
5.Dayani, M., Mohammadi, J., and Naderi, M. 2009. Geostatistical Analysis of Pb, Zn and Cd concentration in soil of Sepahanshahr suburb (south of Esfahan). J. Water Soil. 23: 4. 67-76. (In Persian)
6.ESRI. 2002. Spatial Analyst Help Documentation. ArcGIS Users’ Guide. ESRI Inc., Redlands, CA. 563p.
7.Fox, J. 2008. Applied Regression Analysis and Generalized Linear Models, 2nd edn. Sage Publications, CA.
8.Gee, G.H., and Bauder, J.W. 1986. Particle size analysis, P 383-411. In: A. klute (Ed.), Methods of soil Analysis. Physical Properties. SSSA, Madison, WI.
9.Huang, X., Senthilkumar, S., Kravchenko, A., Thelen, K., and Qi, J. 2007. Total carbon mapping in glacial till soils using near-infrared spectroscopy, Landsat imagery and topographical information. Geoderma. 141: 1-2. 34-42.
10.Khalil Moghadam, B., and Ghorbani Dashtaki, Sh. 2012. Comparison of geostatistics, PTFs, SSPFs methods and their combination for estimating soil surface shear strength. J. Water Soil. 26: 1. 127-128. (In Persian)
11.Khodakarami, L., Safianian, A., Mir ghafari, N., Afioni, M., and Golshahi, A. 2011. Mapping of microelement concentration of chromium, cobalt and nickel in soils of sub-catchment three of Hamadan using GIS and geostatistic. J. Sci. Technol. Agric. Natur. Resou. Water and Soil Sci. 15: 58. 243-254. (In Persian)
12.Liao, K., Shaohui, X.U., Jichun, W.U., and Qing, Z.H.U. 2013. Spatial estimation of surface soil texture using remote sensing data. Soil Science and Plant Nutrition. 59: 488-500.
13.Makabe, S., Kakuda, K., Sasaki, Y., Ando, T., Fujii, H., and Ando, H. 2009. Relationship between mineral composition or soil texture and available silicon in alluvial paddy soils on the Shounai Plain, Japan. Soil Science and Plant Nutrition. 55: 300-308.
14.Meersmans, J., De Ridder, F., Canters, F., Baets, S.D., and Molle, M.V. 2008. A multiple regression approach to assess the spatial distribution of Soil Organic Carbon (SOC) at the regional scale (Flanders, Belgium). Geoderma. 143: 1-2. 1–13.
15.Mohammadi, J. 2006. Pedometrics (Vol 2: Spatial statistic). Pelk Press. Tehran. (In Persian)
16.Mousavifard, S.M., Momtaz, H.R., and Khodaverdiloo, H. 2013. Efficiency of some geostatistical estimators for interpolation and mapping some soil quality properties. J. Soil Water Resour. Cons. 2: 3. 57-71. (In Persian)
17.Noorigheidari, M.H. 2010. Identify of outlier data in overflow regional to method of principle component. National Congress of Civil engineering. (In Persian) 
18.Odland, J. 1988. Spatial autocorrelation. In: G.I. Thrall (Ed.), Sage University Scientific Geography Series no. 9. Sage Publications, Beverly Hills, 87p.
19.Oliver, M.A., and Carroll, Z.L. 2004. Description of spatial variation in soil to optimize cereal management. Project Report 330. Home-Grown Cereals Authority, London.
20.Ostovari, Y., Beigi Harchegani, H., and Davoodian, A.R. 2012. Spatial variation of nitrate in the Lordegan aquifer. Water and Irrigation Management. 2: 1. 55-67. (In Persian)
 21.Pekey, H. 2006. The distribution and sources of heavy metals in Izmit Bay surface sediments affected by a polluted stream. Marine Pollut. Bull. 52: 1197-1208.
22.Santra, Y., Chopra, U.K., and Chakraborty, D. 2008. Spatial variability of soil properties and its application in predicting surface map of hydraulic parameters in agriculture farm. Current Science. 95: 473-482.
23.Shin, N.J., Cailes, J., and Peneffen, M. 2000. Determination of spatial continuity of soil lead levels in an urban residential neighborhood. Environmental Research. 82: 46-52.
24.Walkley, A., and Black, I.A. 1934. An examination of Degtgareff method for determining soil organic matter and a proposed modification of the chromic acid in soil analysis. 1. Experimental. Soil Sci. Soc. Amer. J. 79: 459-465.
25.Webster, R., and Oliver, M.A. 2007. Geostatistics for environmental scientists. John Wiley and Sons, Ltd.