تخمین آب معادل برف با استفاده از داده های هواشناسی و ارتفاع منطقه (مطالعه موردی: حوضه ساروق چای)

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشگاه بوعلی- دانشکده کشاورزی- گروه مهندسی آب

2 گروه آب دانشگاه بو علی سینا همدان

چکیده

سابقه و هدف:
آب معادل برف، یکی از پارامترهای مهم در چرخه هیدرولوژیکی می‌باشد. در ایران اندازه‌گیری عمق برف و آب معادل آن در ایستگاه‌های برف‌سنجی به علت خودکار نبودن ایستگاه‌ها و مشکلات اندازگیری آن بطور محدودی صورت می‌گیرد. با توجه به تحقیقات انجام شده در زمینه آب معادل برف، سرعت باد، درجه حرارت، بارش و ارتفاع منطقه از عوامل تاثیرگذار بر میزان آب معادل برف می‌باشند. از آنجایی که مقادیر پارامترهای سرعت باد، درجه حرارت و بارش می‌توانند در طولانی مدت بر آب معادل برف تاثیرگذار باشند، بنابراین هدف این مطالعه استفاده از پارامترهای هواشناسی و جغرافیایی برای تخمین آب معادل برف در ایستگاه‌های برف‌سنجی حوضه مورد مطالعه می‌باشد.

مواد و روش‌ها:
در این مطالعه با استفاده از داده‌های ایستگاه‌های هواشناسی و کاربرد روش‌های مختلف درون‌یابی، پس از انتخاب بهترین روش که به وسیله معیارهای ارزیابی صورت گرفت، مقادیر بارش، دما و سرعت باد به صورت میانگین‌های 10، 20، 30، 40 و 50 روزه در محل ایستگاه‌های برف سنجی در حوضه ساروق‌چای تخمین زده شد. بعد از تخمین پارامترهای ذکر شده، همبستگی تک تک هر یک از این پارامترها با آب معادل برف ایستگاه‌ها بررسی شد. پارامترهایی که بیشترین همبستگی را داشتند، انتخاب شدند. سپس در نرم‌افزار SPSS بین این پارامترها و ارتفاع ایستگاه‌ها، با آب معادل برف آنها یک رگرسیون چند متغیره به دست‌آمد.

یافته‌ها:
بر اساس نتایج به دست‌آمده، میانگین‌های بارش، دمای 40 روزه و سرعت باد 30 روزه، به ترتیب بیشترین همبستگی را با آب معادل برف ایستگاه‌ها نشان دادند. بهترین رابطه رگرسیونی برای تخمین آب معادل برف با استفاده از این پارامترها به دست آمد. ارزیابی داده‌های واقعی و محاسباتی با توجه به معیار ناش ساتکلیف (0/83) و ضریب همبستگی (0/91) صورت گرفت. نتایج نشان داد که رابطه رگرسیونی به دست آمده از دقت خوبی برای تخمین آب معادل برف در ایستگاه‌های برف‌سنجی مورد مطالعه برخوردار است.

نتیجه‌گیری
در این پژوهش، با توجه به کمبود ایستگاه‌های هواشناسی در مناطق کوهستانی شمال غربی کشور از روش‌های درون‌یابی برای تخمین مقادیر پارامترهایی سرعت باد بارش و دما، در محل ایستگاه‌های برف‌سنجی استفاده شد. نتایج نشان داد که از بین روش‌های درون یابی، توابع پایه شعاعی با مدل چند ربعی معکوس برای میانگین سرعت باد 10 الی 50 روزه، مدل نواری کاملا منظم برای تخمین میانگین دمای 10 الی 50 روزه و روش کریجینگ با مدل گوسین برای برآورد میانگین بارش 10 الی 50 روزه در ایستگاه‌های برف-سنجی از دقت خوبی برخوردار هستند. با استفاده پارامترهایی که بیشترین همبستگی را با آب معادل برف داشتند، یک برای تخمین آب معادل برف به دست آمد. ارزیابی رابطه رگرسیونی نشان داد می‌توان از آن برای تخمین آب معادل برف در ایستگاه‌های مربوطه استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Snow Water Equivalent Estimation Using Meteorological Data and Land Elevation (A Case Study: Sarug-chai Basin)

نویسنده [English]

  • hadi ansari 1
1
2
چکیده [English]

Background and objectives:
Snow water equivalent (SWE) is a key parameter in hydrological cycle. In Iran, measurement of snow depth and its water equivalent is usually is limited due to lack of automated snow measuring instruments. According to research conducted in the field of snow water equivalent, wind speed, temperature, precipitation and elevation are the factors affecting the amount of snow water equivalent. Because values for wind speed, temperature and precipitation can affect the long-term snow water equivalent, Therefore the aim of this study using of meteorological and geographical parameters to estimate snow water equivalent of snow stations in the study area.

Materials and methods:
In the current study, based on meteorological data and interpolation method snow water equivalent was estimated. To this regard, first, average amounts of precipitation, air temperature and wind speed were computed during periods of 10, 20, 30, 40 and 50 days. Then, binary correlations between snow water equivalent and the parameters were estimated. Parameters that had the highest correlation were selected. Then in SPSS software between these parameters and the elevation of the stations, the snow water equivalent to a multiple regression obtained. The regression equation were validated with snow water equivalent data measurement in snow stations.

Results:
Based on these results, the average precipitation, temperature 40-day, and wind speed of 30-day, showed the highest correlation with snow water equivalent, respectively. The best snow water equivalent equation obtained using the relevant parameters. Estimated data was also compared with the observed data, based on the Nash- Sutcliffe criteria (NS= 0.83) and regression coefficient (r= 0.91). The results showed an acceptable accuracy of the equation on snow water equivalent estimation.

Conclusion:
In this study, due to the lack of meteorological measuring in snow stations, the interpolation methods for estimating the amount of precipitation, wind speed and temperature parameters the location station was used. The results indicated that of the interpolation methods, radial basis functions with model a Inverse Multiquadric for average wind speed of 10 to 50 days, Completely Regularized Spline model to estimate the average temperature of 10 to 50 days and kriging method with Gaussian model for estimating the average precipitation 10 to 50 days, of the high accuracy in the snow stations. Using the parameters that were most correlated with snow water equivalent, a regression equation to estimate snow water equivalent obtained. Evaluation showed regression equation can be used to estimate snow water equivalent in the respective stations.

کلیدواژه‌ها [English]

  • Snow water equivalent
  • snow measuring instruments
  • Sarug-chai basin
  • Geostatistics
1.Carlson, R.E., and Foley, T.A. 1991. The Parameter R2 in Multiquadric Interpolation. Computers Math. 21: 29-42.
2.Delbari, M., Khaiat Kholghi, M., and Mahdian, M.H. 2004. Evaluating geostatistics methods in estimating hydraulic conductivity in Shib-Ab and Posht-Ab, Sistan Plain, Iran. Iran. J. Agric. Sci. 35: 1-12. (In Persian) 
3.Dowlatabadi, S., and Zomorodian, S.M.A. 2014. Hydrological Simulation of Firoozabad Basin By SWAT. Iranian of Irrigation and Water Engineering. 4: 38-48. (In Persian)
4.Di Piazza, A., Lo Conti, F., Noto, L.V., Viola, F., and La Loggia, G. 2011. Comparative analysis of different techniques for spatial interpolation of rainfall data to create a serially complete monthly time series of precipitation for Sicily, Italy. J. Appl. Earth Obs. Geoinf. 13: 396-408.
5.Elder, K.J., Dozier, J., and Michaelsen, J. 1991. Snow Accumulation and Distribution in an Alpine Watershed. Water Resources Research. 27: 1541-1552.
6.Egli, L., Jonas, T., and Meister, R. 2009. Comparison of different automatic methods for estimating snow water equivalent. Cold Regions Science and Technology. 57: 107-115.
7.Fathzade, A., and Zare Bidaki, R. 2012. Estimating distribution of snow water equivalent at times of snow accumulation using of degree - days model. Iran. J. Soil Water Res. 43: 171-177. (In Persian)
8.Fassnacht, S.R., Dressler, K.A., and Bales, R.C. 2003. Snow water equivalent interpolation for the Colorado River Basin from snow telemetry (SNOTEL) data. Water Resources Research. 39: 1208-1218.
9.Franke, R. 1982. Scattered data interpolation: test of some methods. Mathematics of Computations. 33: 181-200.
10.Ghayoor, H.A., Kaviani, M.R., and Mohseni, B. 2004. Estimates of coverage and the amount of snowfall in the mountains north of Tehran, Case Study: River Basin Tajrish. Geographical Research. 19: 15-33. (In Persian)
11.Golmohammadi, G., Marofi, S., and Mohammadi, K. 2009. Regionalisation of runoff coefficient in Hamedan Province using Geostatistical Methods and GIS, J. Sci. Agric. Technol. Natur. Resour. 46: 1-15. (In Persian) 
12.Hjam, S., and Sharei Pur, Z. 2003. Snowmelt in the basin Taleghan. Geographical Research. 35: 49-62. (In Persian)
13.Jain, S.K., Goswami, A., and Saraf, A.K. 2009. Role of elevation and aspect in snow distribution in western Himalaya. Water Resour Management. 23: 71-83.
14.Jonas, T., Marty, C., and Magnusson, J. 2009. Estimating the snow water equivalent from snow depth measurements in the Swiss Alps. J. Hydrol. 378: 161-167.
15.Kitanidis, P.K. 1993. Geostatistics, P 1-39. In: D.R. Maidment, (ED), Handbook of Hydrology. Part 20. McGraw-Hill Press, New York.
16.Luo, W., Taylor, M.C., and Parker, S.R. 2008. A comparison of spatial interpolation methods to estimate continuous wind speed surfaces using irregularly distributed data from England and Wales. J. Climatol. 28: 947-959.
17.Mahdian, M.H., Rahimi Bandarabady, S., Sokouti, R., and Norouzi Banis, Y. 2009. Appraisal of the Geostatistical Methods to Estimate Monthly and Annual Temperature. J. Appl. Sci. 9: 128-134.
18.Marofi, S., Toranjeyan, A., and Zare Abyaneh, H. 2009. Evaluation of geostatistical methods for estimating electrical conductivity and pH of stream drained water in Hamedan-Bahar Plain. J. Water Soil Cons. 16: 169-187. (In Persian)
19.Marofi, S., Tabari, H., Zare Abyaneh, H., and Sharifi, M.R. 2010. Investigating the influence of wind on spatial distribution of snow accumulation in one of Karoon sub-basins (case study-Samsami basin). J. Water Irrig. Engin. 1: 31-44. (In Persian)
20.Mizukami, N., Perica, S., and Hatch, D. 2011. Regional approach for mapping climatological snow water equivalent over the mountainous regions of the western United States. J. Hydrol. 400: 72-82.
21.Molotch, N.P., Colee, M.T., Bales, R.C., and Dozier, J. 2005. Estimating the spatial distribution of snow water equivalent in an alpine basin using binary regression tree models: the impact of digital elevation data independent variable selection. Hydrological Processes. 19: 1459-1479.
22.Naoum, S., and Tsanis, I.K. 2004. Ranking Spatial Interpolation Techniques Using a Gis-based DSS». J. Global Nest. 6: 1-20.
23.Price, D.T., Mckenny, D.W., Nelder, I.A., Hutchinsen, M.F., and Kesteve, J.L. 2000. A comparison of two statistical methods for spatial interpolation of Canadian monthly mean climate data. Agricultural and Forest Meteorology. 101: 81-94.
24.Rahimi, D., and Danapvr, M. 2012. Analysis of Effectiveness of Climatic Variation on Snow Depth Case Study: Koohrang). Geographic Space. 12: 61-75. (In Persian)
25.Tabari, H., Marofi, S., Zare Abyane, H., and Sharifi, M.R. 2010. Comparison of artificial neural network and combined models in estimating spatial distribution of snow depth and snow water equivalent in Samsami basin of Iran. Neural Computing and Applications. 19: 625-635.
26.Wang, J.R., and Tedesco, M. 2007. Identification of atmospheric influences on the estimation of snow water equivalent from AMSR-E measurements. Remote Sensing of Environment. 111: 398-408.
27.Winstral, A., Elder, K., and Davis, R.E. 2002. Spatial snow modeling of wind-redistributed snow using terrain based parameters. J. Hydrometeorol. 3: 524-528.
28.Yang, J.S., Wang, Y.Q., and August, P.V. 2004. Estimation of Land Surface Temperature Using Spatial Interpolation and Satellite-Derived Surface Emissivity. J. Environ. Inf. 4: 40-47.
29.Zabihi, A., Solaimani, K., Shabani, M., and Abravsh, S. 2012. An Investigation of Annual Rainfall Spatial Distribution Using Geostatistical Methods (A Case Study: Qom Province). Physical Geography Research Quarterly. 43: 102-112. (In Persian)