ریز مقیاس‌سازی نقشه‌های رقومی برخی از ویژگی‌های سطحی خاک (مطالعه ی موردی: حوضه ی آبخیز مرک، استان کرمانشاه)

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 مرکز تحقیقات و کشاورزی و منابع طبیعی استان کرمانشاه

2 دانشیار گروه خاک‌شناسی، دانشکده کشاورزی، دانشگاه شهرکرد

3 دانشیار موسسه‌ی تحقیقات خاک وآب

4 استادیار مرکز تحقیقات کشاورزی و منابع طبیعی استان اصفهان

5 استادیار گروه خاک‌شناسی، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان

چکیده

نقشه‌های رقومی خاک با قدرت تفکیک مکانی ریز، یکی از نیازهای اساسی کاربران و برنامه‌ریزان بخش کشاورزی، سابقه و هدف: یکی از نیازهای اساسی کاربران و برنامه‌ریزان بخش کشاورزی، منابع طبیعی و محیط زیست نقشه‌ی رقومی ویژگی-های خاک با قدرت تفکیک مکانی ریز است. اما در کشور، از یک-سو با کمبود چنین داده‌هائی مواجه هستیم و از سوی دیگر تهیه این گونه داده بسیار پرهزینه است. در چنین شرایطی، ریزمقیاس‌سازی نقشه‌های رقومی خاک به عنوان گزینه‌ای مناسب برای تهیه‌ی نقشه‌هایی با اندازه پیکسل‌ ریز مطرح می‌گردد. هدف از این پژوهش، بررسی و ارزیابی تهیه نقشه‌های رقومی با اندازه پیکسل 10 متر از نقشه‌های رقومی ویژگی‌های سطحی خاک با اندازه پیکسل 50، 100 و 250 متر با استفاده از روش ریز مقیاس سازی مستقیم در سطح 240000 هکتار از اراضی زیر حوضه آبخیز مرک واقع در استان کرمانشاه بود.
مواد و روش‌ها: ابتدا ساختار مکانی ویژگی‌های خاک سطحی شامل درصد شن، درصد سیلت، درصد رس، درصد کربن آلی، درصد کربنات کلسیم معادل و درصد سنگریزه بر اساس داده-های میراثی خاک(320 نمونه با توزیع تصادفی نامنظم) در کل ناحیه مورد مطالعه، با ترسیم تغییرنما و برازش مدل مناسب تعیین گردید. سپس نقشه‌ی کریجینگ بلوکی ویژگی‌های مورد نظر در اندازه پیکسل 50، 100 و250 متر تهیه شد. اجزاء سرزمین، تصاویر ماهواره‌ای، نقشه‌ی زمین‌شناسی، ژئومورفولوژی و کاربری اراضی به عنوان متغیرهای کمکی در این پژوهش مورد استفاده قرار گرفتند. به منظور انتخاب متغیرهای کمکی تاثیرگذار بر متغیر هدف، از ضریب همبستگی استفاده شد. متغیرهای کمکی که در سطح 01/0 با ویژگی‌های مورد مطالعه‌ی خاک همبستگی معنی‌دار داشتند؛ برای ورود به فرایند مدل‌سازی انتخاب شدند. سپس از روش مستقیم برای ریز مقیاس سازی نقشه-های مذکوراستفاده شد. در این روش، ابتدا از طریق مدل‌های خطی تعمیم‌یافته و درختان رگرسیون به سادگی رابطه‌ی بین خصوصیات خاک و متغیرهای کمکی(هر دو با اندازه پیکسل درشت) شناسائی می‌گردد و سپس از پارامترهای واسنجی مدل و ویژگی‌های محیطی با اندازه پیکسل ریز برای پیش‌بینی خصوصیات خاک در اندازه پیکسل ریز استفاده می‌شود. آموزش مدل‌ها بر اساس 75درصد داده‌های ساپورت بلوکی منطبق با داده های اولیه وارزیابی نتایج بر اساس 25 درصد بقیه داده ها به روش اعتبار سنجی کا مرتبه با کای معادل با4 انجام شد.
یافته‌ها: نتایج نشان داد مقدار شن کمترین و مقدار سنگریزه بالاترین همبستگی با متغیرهای کمکی دارند. با در نظرگرفتن همه‌ی اندازه پیکسل‌ها، بیشترین همبستگی بین ویژگی‌های خاک و ارتفاع، مدت تابش،تحدب، شیب، شاخص خیسی توپوگرافی و شاخص همواری دره با درجه تفکیک بالا مشاهده شد. ریزمقیاس‌سازی سنگریزه با استفاده از روش مدل‌های خطی تعمیم‌یافته از اندازه پیکسل 50 متر به 10 متر بهترین کارائی را نشان داد(ریشه میانگین مربعات خطای 57/5%). ریزمقیاس‌سازی شن، رس، کربنات کلسیم معادل و کربن آلی از اندازه پیکسل250 و سیلت از اندازه پیکسل 50 متر به اندازه پیکسل 10 متر با روش درختان رگرسیون منجر به برآورد کمترین مقدار ریشه میانگین مربعات(به ترتیب 9/3%، 0/3%، 39/4%، 21/0% و 31/2 % ) خطا گردید. همچنین نتایج نشان داد که درختان رگرسیون در ریزمقیاس‌سازی ویژگی‌های خاک با اندازه پیکسل مختلف بهتر عمل می‌کند.
نتیجه گیری: به نظر می رسد روش مستقیم توانسته است نقشه-ی رقومی برخی متغیرهای خاک (مانند سیلت، کربنات کلسیم معادل، کربن آلی و درصد سنگریزه) را با صحت و کارائی قابل قبولی ریزمقیاس نماید. بدیهی است همبستگی قوی بین متغیر هدف و متغیرهای کمکی سبب افزایش کارائی مدل‌ها و صحت نقشه‌های ریز مقیاس شده می‌گردد. همچنین مشخص گردید متغیرهای کمکی در اندازه پیکسل‌های مختلف، وابستگی متفاوتی با متغیر هدف دارند که بر کارائی ریزمقیاس-سازی اثر می‌گذارد.

کلیدواژه‌ها


عنوان مقاله [English]

Downscaling digital maps of some soil surface properties (A case study: Merek sub catchment, Kermanshah province)

نویسندگان [English]

  • shahrokh fatehi 1
  • Jahangard Mohammadi 2
  • Mohammad Hassan Salehi 2
  • Aziz momeni 3
  • Norair Toomanian 4
  • azam jafari 5
1 Agriculture and natural resource research center of Kermanshah
2 Associate professor of soil science, college of agriculture, Shahr-e-kord University
3 Associate professor of soil science, soil and water research institute
4 Associate professor of soil science, Agriculture and natural resource research center of Esfahan
5 Associate professor of soil science, college of agriculture, Shahid Bahonar Kerman University
چکیده [English]

Background and objective: Digital soil maps with fine resolution are one of the basic needs of users and decision-makers in agriculture, natural resource and environment. However, in our country, there is scarcity of this kind of data and producing fine resolution soil data is very costly. Therefore, downscaling digital soil maps arises as a suitable option in order to produce fine resolution soil data. Objectives of this study were to examine and evaluate downscaling digital maps of some soil surface properties from block supports 50,100 and 250 m to block support 10 m using direct approach across Merek sub catchment in Kermanshah province with an area of 24000 ha.
Material and methods: The first spatial structure information of soil surface properties including %sand, % silt, %clay, %organic carbon, % equivalent calcium carbonate and %gravel determined using legacy data(320 randomized point samples) and variography. Then, block kriging maps were produced with block support 50,100 and 250m. Terrain attributes, Landsat images, geology map, geomorphology and land use maps were used in this study as auxiliary variable. Correlation coefficient between auxiliary variables and target variables is calculated and auxiliary variables were significant at the 0.01 level selected as model inputs. Afterward, downscaling direct approach is used. In this approach, relationship between the soil properties and auxiliary variables with coarse resolution identified using generalized linear models (GLMs) and regression tree. Next, calibrated parameters and fine resolution covariates are applied to prediction soil properties in fine resolution. Models are trained on 75% of the block support data accordance with original data and evaluated on the remaining 25%, using k-fold validation (k=4) procedure.
Results: The results showed that amount of sand and gravel had minimum and maximum correlations with covariates, respectively. Considering all the pixel sizes, the highest correlation obtained among soil properties and elevation, direct duration, convexity, slope, topographic wetness index and mrvbf. Downscaling gravel map from block support 50m to 10m by GLMs showed best performance (RMSE=5.57%). Downscaling sand, clay, equivalent calcium carbonate and organic carbon from 250m block support and silt from of 50 m to 10 m block support using regression tree lead to estimate the lowest root mean square error (3.9%, 3%, 4.39%, 0.21% and 2.31% respectively). Besides, regression trees showed the best performance in downscaling of soil properties with different pixel size.
Conclusion: it seems that direct approach would be able to downscale digital maps of soil variables (such as silt, calcium carbonate equivalent, sand and organic carbon content) with acceptable accuracy and efficiency. Obviously, GLMs and regression tree can lead to strong results if the correlation between soil properties and auxiliary variables is high. It can be concluded that various auxiliary variables at diverse pixel sizes have different relationships with the target variable which affect the performance of the downscaling.

کلیدواژه‌ها [English]

  • Downscaling
  • Soil digital mapping
  • Auxiliary variables
  • Soil properties
1.Araújo, M.B., Thuiller, W., Williams, P.H., and Reginster, I. 2005. Downscaling European species atlas distributions to a finer resolution: implications for conservation planning. Global Ecology and Biogeography. 14: 1. 17-30.
2.Bagheri Bodaghabadi, M., Salehi, M.H., Mohammadi, J., Toomanian, N., and Esfandiarpour Boroujeni, I. 2011. Efficiency of digital elevation model and its attributes for soil mapping using Soil-Land Inference Model (SoLIM). J. Water Soil. 25: 5. 1106-1118. (In Persian)
3.Barbosa, A.M., Real, R., Olivero, J., and Vargas, J.M. 2003. Otter (Lutra lutra) distribution modeling at two resolution scales suited to conservation planning in the Iberian Peninsula. Biological Conservation. 114: 377–387.
4.Beckett, P., and Webster, R. 1971. Soil variability: a review. Soils and Fertilizers. 34: 1-15.
5.Bierkens, M.F.P., Finke, P.A., and Willigen, P.D. 2000. Upscaling and Downscaling Methods for Environmental Research. Kluwer Academic Publishers, Dordrecht.
6.Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. 1984. Classification and regression. Tress. Wadsworth, Belmont, CA.
7.Fatehi, Sh. 2008. Semi-detailed soil survey of Merek plain in Karkheh river basin. Soil and Water Research Institute, 54p. (In Persian)
8.Finke, P.A., Bouma, J., and Hoosbeek, M.R.E. 1998. Soil and water quality at different scales. Kluwer, Dordrecht, the Netherlands.
9.Grunwald, S. 2009. Multi-criteria characterization of recent digital soil mapping and modelling approaches. Geoderma. 152: 195-207.
10.Hastie, T., Tibshirani, R., and Friedman, J. 2009. The Elements of Statistical Learning: Data Mining, Inference and Prediction (Second Edition), 780p.
11.Hengl, T. 2006. Finding the right pixel size. Computers & Geosciences. 32: 1283-1298.
12.Hengl, T., Toomanian, N., Reuter, H.I., and Malakouti, M.J. 2007. Methods to interpolate soil categorical variables from profile observations: Lessons from Iran. Geoderma. 140: 4. 417-427.
13.Jafari, A., Ayoubi, Sh., and Khademi, H. 2012. Application of Regression Models for Prediction of Soil Classes in Some Regions of Central Iran (Zarand district, Kerman Province). J. Water Soil. 25: 6. 1353-1364. (In Persian)
14.Kerry, R., Goovaerts, P., Rawlins, B.G., and Marchant. B.P. 2012. Disaggregation of legacy soil data using area to point kriging for mapping soil organic carbon at the regional scale. Geoderma. 170: 347-358.
15.Lagacherie, P., and McBratney, A.B. 2007. Spatial soil information systems and spatial soil inference systems: Perspectives for digital soil mapping, P 3-22. In: P. Lagacherie, et al. (Eds.), Digital soil mapping: Anintroductory perspective. Elsevier, New York.
16.Lin, A. 1989. Concordance correlation-coefficient to evaluate reproducibility. Biometrics. 45: 255-268.
17.Luoto, M., and Hjort, J. 2005. Evaluation of current statistical approaches for predictive geomorphological mapping. Geomorph. 67: 299-315.
18.Malone, B.P., McBratney, A.B., Minasny, B., and Laslett, G.M. 2009. Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma. 154: 138-152.
19.Malone, B.P., Mcbratney, A.B., Minasny, B., and Wheeler, I. 2012. General method for downscaling earth resource information. Computers & Geosciences. 41: 119-125.
20.Malone, B.P., McCartney, A.B., and Minasny, B. 2013. Spatial Scaling for Digital Soil Mapping. Soil Sci. Soc. Am. J. 77: 890-902.
21.McBratney, A.B. 1998. Some considerations on methods for spatially aggregating and disaggregating soil information. Nutrient Cycling in Agroecosystems. 50: 51-62.
22.McPherson, J.M., Jetz, W., and Rogers, D.J. 2006. Using coarse-grained occurrence data to predict species distributions at finer spatial resolutions–possibilities and limitations. Ecological Modeling. 192: 499-522.
23.Merlin, O., Walker, J.P., Chehbouni, A., and Kerr, Y. 2008. Towards deterministic downscaling of SMOS soil moisture using MODIS derived soil evaporative efficiency. Remote Sensing of Environment. 211: 3935-3946.
24.Nabiollahi, K., Haidari, A., and Taghizadeh-Mehrjerdi, R. 2014. Digital Mapping of Soil Texture Using Regression Tree and Artificial Neural Network in Bijar, Kurdistan. J. Water Soil. 28: 5. 1025-1036. (In Persian)
25.Pouteau, R., Rambal, S., Ratte, J.P., Gogé, F., Joffre, R., and Winkel, T. 2011. Downscaling MODIS-derived maps using GIS and boosted regression trees: The case of frost occurrence over the arid Andean highlands of Bolivia. Remote Sensing of Environment. 115: 117-129.
26.Rouse, J.W., Hass, R.H.J., Schell, A., Deering, D.W. 1973. Monitoring vegetation systems in the Great Plains with ERTS. Third ERTS Symposium, NASA SP-351, Vol. 1, Washington, DC. Pp: 309-317.
27.Samuel-Rosa, A., Heuvelink, G.B.M., Vasques, G.M., and Anjos, L.H.C. 2015.
Do more detailed environmental covariates deliver more accurate soil maps? Geoderma. 243-244: 214-227.
28.Taghizadeh-Mehrjardi, R., Minasny, B., McBratney, A.B., Triantafilis, J., Sarmadian, F., and Toomanian, N. 2012. Digital soil mapping of soil classes using decision trees in central Iran, P 197-202. In: Minasny, B., B.P. Malone and A.B. McBratney (Eds.), Digital Soil Assessment and Beyond. CRC, London.
29.Taghizadeh-Mehrjardi, R., Minasny, B., Sarmadian, F., and Malone, P.B. 2013. Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma. 213: 15-28.
30.Taylor, J.A., Jacob, F., Galleguillos, M., Prévot, L., Guix, N., and Lagacherie, P. 2013. The utility of remotely-sensed vegetative and terrain covariates at different spatial resolutions in modelling soil and water table depth (for digital soilmapping). Geoderma. 193: 83-93.
31.Van Deventer, A.P., Ward, A.D., Gowda, P.H., and Lyon, J.G. 1997. Using Thematic Mapper Data to Identify Contrasting Soil Plains and Tillage Practices. Photogrammetric Engineering & Remote Sensing. 63: 87-93.
32.Xiao, J., Shen, Y., Tateishi, R., and Bayaer, W. 2006. Development of topsoil grain size index for monitoring desertification in arid land using remote sensing. Inter. J. Rem. Sens. 27: 2411-2422.
33.Zinck, J.A. 1989. Physiography and soils. Lecture notes for K6 course. Soils Division, (ITC), Enschede, the Netherlands, 132p.