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Background and Objectives: Precise forecasting of water quality (WQ)
parameters, specifically PS (potential salinity), is critical for sustainable
water utilization. In water-stressed regions like the Karun River in Iran,
effective monitoring and prediction of the PS is not only important but
also critical because of anthropogenic activities, climate change, and
reduced inflows of freshwater. Therefore, effective machine learning (ML)
models and appropriate input data is very important for monitoring and
predicting WQ parameters. However, the influencing factors exhibit
complex and non-linear relationships, and multicollinearity in the datasets
makes it challenging for traditional ML models to address the problem.
Limitations, thus, can result in inaccurate predictions, which obstruct the
establishment of sustainable water management strategies. As mentioned
above, accurate forecasting of PS is essential for water and soil
conservation, because PS helps mitigate salinity-related degradation of
agricultural lands and ensure the sustainability of vital ecosystems. This
study supports the development of effective conservation strategies to
maintain soil productivity and WQ in vulnerable regions by providing
reliable predictions. To address these issues, the present study introduces a
new hybrid model, IKRidge-GRM, which inherits the advantages of
improved kernel ridge regression (IKRidge) and generalized ridge
regression (GRM). The hybrid model integrates IKRidge's improved
capacity to identify non-linearity with GRM's resilience against
multicollinearity problems to improve the predictive performance of the PS
prediction. This unique framework offers improved stability and
interpretability of results, as well as increases forecast accuracy, making it
a helpful tool for environmental monitoring and decision-making. The
proposed strategy could aid policymakers and water resource managers in
designing reasonable strategies to alleviate salinity issues, protect aquatic
ecosystems, and ensure the long-term survival of vital water sources like
the Karun River.

Materials and Methods: This study introduces a novel hybrid ML model
based on two regression techniques, namely: generalized ridge regression
(GRM) and improved kernel ridge regression (IKRidge), called IKRidge-
GRM. The GRM effectively addresses multicollinearity and overfitting
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issues using the iteratively reweighted least squares (IRLS) process. On the
other hand, IKRidge incorporates a wavelet kernel function, optimized
through the INFO algorithm, and the regularized locally weighted (RLW)
approach, enabling it to capture complex, non-linear patterns in the data
with high precision. This combination of techniques allows the hybrid
model to overcome the limitations of traditional ML methods, making it
particularly suitable for handling the intricate relationships inherent in WQ
datasets. To further enhance the model's predictive accuracy, the IKRidge-
GRM framework integrates a light gradient boosting machine (LGBM) for
feature selection. It reduces dimensionality by identifying the most relevant
input variables while eliminating redundant or irrelevant features.
Additionally, the model employs multivariate variational mode decomposition
(MVMD) to decompose the input data into high- and low-frequency
components, allowing it to capture both short-term fluctuations and
long-term trends in WQ parameters. The study utilized an extensive
dataset comprising 48 years of monthly WQ data collected from the Farisat
station on the Karun River. Nine keys WQ parameters, including
magnesium (Mg), sulfate (SO4>), calcium (Ca), discharge (Q), sodium
(Na), bicarbonate (HCO3), chloride (Cl), electrical conductivity (EC), total
dissolved solids (TDS) and pH, were used as inputs to forecast the PS three
months ahead.

Results: The proposed IKRidge-GRM model accurately predicted PS
values at the Farisat station, significantly outperforming baseline models
(Ridge, DELM, and LSSVM) and their MVMD-enhanced versions. By
leveraging its hybrid architecture and advanced feature extraction
techniques, the MVMD-IKRidge-GRM model achieved remarkable results
during the testing phase, with the highest correlation coefficient (R=0.977),
the lowest RMSE (0.956), and the lowest MAPE (4.521). These metrics
indicate the model's superior predictive accuracy and reliability in handling
complex, non-linear relationships. The model also achieved high
IA (0.988) and KGE (0.948) scores, underscoring its robustness and
effectiveness in capturing the intricate dynamics of the PS variations.
These results highlight the model's ability to uncover hidden patterns in the
data and provide highly accurate predictions, even in challenging scenarios
involving multicollinearity and non-linear dependencies. The model's
exceptional performance was further confirmed by visual evaluations such
as scatter plots, relative error plots, and Taylor diagrams. Scatter plots
demonstrated that the MVMD-IKRidge-GRM model's predictions closely
aligned with measured values, with minimal prediction intervals and
narrow error distributions, reflecting its precision and consistency. Relative
error plots revealed that the model exhibited the most compact and
symmetric error distribution, with minimal bias and variability. Relative
error plots also indicated the models’ ability to generalize well across
different data points. Taylor diagrams provided evidence of the model's
strong agreement with reference data, showcasing its ability to balance
accuracy, variability representation, and error minimization effectively.
Residual analysis further confirmed the model's precision and reliability.
Among all the models tested, the MVMD-IKRidge-GRM model achieved
the smallest mean residual (-0.0073) and the lowest standard deviation
(0.0613), demonstrating its ability to minimize prediction errors consistently.
This level of precision is critical for practical applications, as it ensures that
the model can provide reliable forecasts for decision-making in water
resource management. The model's ability to integrate advanced regression
techniques, feature selection, and frequency decomposition enhances its
predictive capabilities. The ability also establishes the proposed model as a
robust framework for addressing complex environmental challenges. These
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findings emphasized the potential of the MVMD-IKRidge-GRM model as
a powerful tool for sustainable water resource management, particularly in
regions like the Karun River basin, where accurate and reliable predictions
are essential for mitigating environmental degradation and ensuring
long-term ecological balance.

Conclusion: The IKRidge-GRM model predicted PS values at the Farisat
station on the Karun River. The findings demonstrated high accuracy and
reliability across all evaluation metrics. The IKRidge-GRM model has the
ability to uncover hidden patterns in complex, non-linear datasets. Its
capacity to deliver precise predictions also highlights its potential as a
valuable tool for environmental monitoring and management. By
integrating advanced regression techniques, such as improved kernel ridge
regression (IKRidge) and generalized ridge regression (GRM), with
innovative feature selection and decomposition methods like light gradient
boosting machine (LGBM) and multivariate variational mode decomposition
(MVMD), the model effectively addresses challenges such as
multicollinearity, overfitting, and non-linear relationships. This comprehensive
framework ensures that the IKRidge-GRM model achieves superior
predictive performance and maintains robustness and adaptability across
diverse environmental conditions. This study emphasizes the importance of
combining advanced ML techniques with effective preprocessing methods
to develop reliable models for analyzing and forecasting complex
environmental data. Integrating feature selection and frequency decomposition
enhances the model's ability to extract meaningful information from
high-dimensional datasets. This integration also enable the models to
capture both short-term fluctuations and long-term trends in WQ
parameters better. Such capabilities are essential for addressing the
multifaceted challenges posed by environmental degradation, particularly
in regions like the Karun River basin, where water resources are under
significant stress due to anthropogenic activities and climate change.
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Introduction

Water, as a vital resource for life,
agriculture, industry, and the preservation
of biodiversity, plays a fundamental role in
the development of societies (Bui et al.,
2020; Chang et al., 2015). With increasing
demand and urbanization, water consumption
has risen significantly (Salarijazi et al.,
2024; Zhou et al., 2024). Simultaneously,
Water pollution in major rivers worldwide,
such as the Karun River in Iran, is primarily
caused by industrial, agricultural, and
urban activities. This pollution has
escalated into a severe crisis, threatening
public health, economic growth, and
sustainable development (Ahmadianfar,
Shirvani-Hosseini, He et al., 2022;
Asadollah et al., 2021). WQ prediction is an
effective tool for managing this crisis
because it provides valuable information for
water-dependent industries and resource
managers (Chatterjee et al., 2017; Chen
et al., 2024). These predictions contribute to
better planning, pollution reduction, and
water usage optimization, thereby positively
impacting the economy and public health
(Gharemahmudli and Seyed Hamidreza
Sadeghi, 2024; Zahiri et al., 2024).

Many studies have been conducted to
develop the WQ prediction models (Deng
et al., 2015; Huang et al., 2018; Jamei et al.,
2021). These models mainly use two
approaches: physics-based (PB) or ML
methods (Qiu et al., 2020). Physics-based
models, designed based on hydrodynamic
laws, require deep knowledge of physical
and chemical processes and detailed
information about pollution sources and
tributaries (Han et al., 2021). In contrast,
ML methods rely only on historical data to
establish mathematical relationships between
parameters without considering complex
theories or model calibration (Wu et al.,
2021). One more advantage for ML models
is their ability to transfer and apply to
different locations easily. The mentioned
reasons have promoted many researchers to
widely explore and use ML methods.

Artificial intelligence (Al) advancements
have increased attention on ML models
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for data-driven modeling (Ahmadianfar,
Shirvani- Hosseini, Samadi-Koucheksaraee
et al.,, 2022; Ahmed et al., 2019). For
example, in the study by Barzegar et al.
(2016), the accuracy of four different
models in predicting the salinity of the
Ajichay River was evaluated (Barzegar
et al., 2016). The results showed that the
adaptive neuro-fuzzy inference system
(ANFIS) model performed better than the
artificial neural network (ANN) model.
Additionally, the hybrid wavelet-ANFIS
and wavelet-ANN models, using the db4
wavelet transform, had higher prediction
accuracy than the ANFIS and ANN models.
These findings indicated that wavelet-based
hybrid methods could improve the
performance of WQ prediction models. In
another study, Haddad et al. (2017)
compared the performance of genetic
programming (GP) and the least squares
support vector regression (LSSVR) model
in predicting the WQ of the Sefidrud River
(Bozorg-Haddad et al., 2017). They used
principal component analysis (PCA) to
select effective inputs and applied the
genetic algorithm (GA) to optimize the
parameters of the LSSVR model. The
results showed that the GA-LSSVR model
had higher accuracy than the GP model,
confirming the importance of hybrid and
optimization methods in WQ modeling.

In another study, Ahmadianfar et al.
(2020) investigated the W-LWLR method,
a combination of wavelet transforms and
locally weighted linear regression, for
predicting the electrical conductivity (EC)
of the Sefidrud River (Ahmadianfar, Jameli,
et al., 2020). A comparison of this method
with models such as SVR (support vector
regression (SVR)), W-SVR (wavelet SVR),
ARIMA (Autoregressive Integrated Moving
Average (ARIMA)) and W-ARIMA showed
that W-LWLR had higher accuracy. This
study highlighted that combining local
methods with wavelet analysis was able to
improve the accuracy of WQ parameter
predictions. In an additional analysis,
Ahmadianfar et al. (2022) combined the
ANFIS model with an adaptive hybrid
optimization method, including particle
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swarm optimization and differential
evolution (ANFIS-DEPSO), to predict the
electrical ~conductivity (EC) of the
Maroon River in Iran (Ahmadianfar,
Shirvani-Hosseini, He, et al., 2022). Due to
wavelet analysis in the proposed hybrid
model, the A-DEPSO-ANFIS model
showed better performance than other
tested models.

In the last few years, Wai et al. (2024)
used GRU (gated recurrent unit) and LSTM
(long short-term memory) models to predict
WQ indices (Wai, et al., 2024). The VMD-
LSTM (variational mode decomposition
with LSTM) model, after decomposing
input signals using EMD (empirical mode
decomposition) and VMD methods, achieved
better performance with a MAPE (mean
absolute percentage error) of 1.9237% and a
KGE (Kling-Gupta efficiency (KGE)) of
0.6761 compared to other models.
Additionally, Jamei et al. (2024) used
gaussian process regression (GPR) to
predict the monthly sodium adsorption ratio
(SAR) of the Zayandehrud River (Jamei
et al., 2024). Applying the Boruta-SHAP
method for feature selection, and TVEF-
EMD (time-varying filter-based EMD) and
VMD for the decomposition of the input
variables improved the accuracy of the
GPR model. In addition, through the
integration of climatological and geospatial
data, Satish et al. (2024) enhanced WQ
forecasts for the Godavari River Basin in
India (Satish, et al., 2024). Their work
distinguished nitrate levels as being
associated with climate and land use
factors. A stacked ANN meta-model,
augmented with XGB, RF, and Extra Trees,
exhibits enhanced predictive performance.
In another study, Kandasamy et al. (2025)
presented a hybrid structure that integrates
remote sensing with ML methods to
estimate chlorophyll-a values in rivers
(Kandasamy et al., 2025). To accurately
estimate  Chl-a  concentrations, they
employed ensemble CatBoost and NBeats
models. According to the results, the
CatBoost model was able to make more
accurate predictions.
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Traditional ML models such as LSSVR,
ANFIS, and GP have succeeded in the WQ
prediction. However, they rely on complex
architecture settings and optimization
processes, which require high computational
resources and make real-time applications
difficult. Additionally, these models face
limitations in understanding the complex
and nonlinear dynamics of WQ data, which
are influenced by external factors such as
climate change and human activities. These
limitations reduce the accuracy and stability
of predictions. Developing a model that can
integrate these complex methods into a
unified and efficient framework remains
challenging. The model should identify
complex patterns in the data while still
working efficiently. The model must
combine the best features of different
methods to be effective while minimizing
their weaknesses. This goal can be achieved
using innovative hybrid strategies or
algorithms that leverage recent advancements
in ML and data processing. This approach
addresses current and future needs in WQ
management and supports sustainable
environmental development.

This paper developed a novel machine
learning (ML) model named GKRidge,
which builds upon the principles of
generalized ridge regression and kernel
ridge regression while incorporating the
concept of regularized locally weighted
regression. The model is further enhanced
by integrating a feature-selection mechanism
based on a Light Gradient Boosting
Machine (LGBM) model, which is
optimized using the Weighted Mean of
Vectors (INFO) strategy (Ahmadianfar,
Heidari, et al.,, 2022). This innovative
combination enables the optimal selection
of input variables to ensure robust
predictive capabilities. Additionally, the
Multivariate Variational Mode Decomposition
(MVMD) technique is applied to the input
variables to decompose their components
effectively, thereby addressing noise and
improving the predictive accuracy of the
model.
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The proposed approach is designed to
enhance both computational performance
and the stability of existing predictive
modeling frameworks. By addressing
limitations such as overfitting, instability,
and inefficiency associated with traditional
models, this method delivers a more
accurate and reliable solution for water
quality (WQ) prediction. It not only ensures
greater predictive accuracy through rigorous
feature selection and input variable
decomposition  but also  introduces
improvements in model computational
efficiency, scalability, and consistency.
As a result, GKRidge signifies a
significant  step  forward in  the
development of advanced ML-based
approaches for tackling complex WQ
prediction challenges, providing a versatile
and effective tool for researchers and
practitioners in environmental modeling
and data analysis.

B=XTxwxX)1xX"XwX2)

in which
_ h' ()
W= dlag (Var(Y))
_ y-n
Z=H ey

where, pu represents the linear predictor
for the observed values in a GLM. 7
denotes the mean of the response variables.
h'(n)) represents the derivative of the link
function h with respect to 1. Var(Y)
indicates the variance function associated
with the distribution of the response variable
Y. Here, to improve the performance of the
GLM, a regularization coefficient p; is used.

B=XTxwxX+p xUM)™ 1 x(XTXwX2)

where p; denotes the regularization
factor. UM expresses the unit matrix.
Eq. (5) is used to determine the predicted

Yorm = XPB

Material and method
The proposed ML model

Generalized ridge regression

The Generalized Ridge Regression
Method (GRM) is introduced to address
issues such as multicollinearity and
overfitting. This method combines Ridge
regression and generalized linear model
(GLM) (Nelder, and Wedderburn, 1972) to
develop a powerful and flexible model. In
the GRM, the model coefficients are
continuously updated through the iteratively
reweighted least squares (IRLS) process.
The GRM selects an appropriate link
function, its derivative, and a variance
function for different distributions (such as
normal, binomial, gamma, or Poisson). The
link function is used at each iteration to
calculate the mean response and linear
prediction. Then the weight matrix and
pseudo-response variable are generated. The
basic formula of GRM is defined as follows,

(1)

2

3)

Using the main formula of GLM
(Eq. (3)), the GRM is derived by adding
ridge regularization. To achieve this, a
regularization term (p;) is included in the
below equation (Eq. (4)). As a result, the
coefficient for the GRM method is
expressed as follows,

“4)

value (Ygrm) generated by the GRM
model.

)
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Improved Kkernel ridge regression

Kernel ridge regression (KRidge)
(Vovk, 2013) improves upon ridge
regression by using kernel methods to
handle non-linear relationships in data.
While ridge regression addresses linear

models and reduces overfitting with a
penalty term, KRidge extends these by
yKRidge = Xa

In which

a=(K+p,UM)"1XTy

Where « is the regression factor, and p,
and K denote the regularization coefficient
and the kernel function, respectively. This

—(xj=x1) =i 1?
Kj, = cos(a1 ><a—2 Xexp|l———

4xaz

where a4, a,, and az are the kernel
function coefficients. In addition, the INFO
optimization approach was employed to
identify the best possible values for these
factors.

To improve the forecasting accuracy of
KRidge, this research proposed new input

p=XTXwxX+p3xUM)™1x (XT xw x7y)

where w is the wavelet kernel function.
ps is the regularization coefficient. The ¢ is

Xnew = $X
Knew = K(Xnew'Xnew,l)

where K., is an improved version of
K, obtained based on X, .

= (Knew + szM)‘lXTy

anew

and

yIKRidge = Xpew

1€

capturing complex, non-linear patterns.
This makes KRidge more effective for
modeling intricate datasets, offering greater
accuracy and adaptability in scenarios
where relationships are not purely linear.
The predicted value (Pxriqge) is calculated
using Eq. (6).

(6)

(6-1)

research used the wavelet kernel function,
which is defined as follows:

(7
variable coefficients derived by the
regularized locally weighted (RLW)

approach. The proposed model is called
improved kernel ridge regression (IKRidge).
The core equation of the RLW method is
expressed as follows,

®)

applied to generate a new kernel function
according to Eq. (9),

©)

(10)

Therefore, Eq. (6-1) is reformulated
as,

(11)

(12)
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where @, indicates a new coefficient
for KRidge, achieved based on K, .

Hybrid of IKRidge and GRM models
This study proposed an innovative

hybrid regression model for predicting the
irrigation water quality indexes (IWQIs).

Vikridge-rM = € X Vikriage + (1 — ¢) X Yorm

where Vikriagge-crm 15 the forecasted
value obtained by using the ykpiqge and
Verym- C 1S a positive number within the
range of [0, 1] that calculated by the INFO
algorithm. Figure 1 depicts the structure of
proposed IKRidge-GRM method.

Feature selection method

The performance of ML models could
deteriorate when an excessive number of
parameters are included. Instead of relying
on traditional input selection methods that
primarily focus on linear relationships, this
study adopted the LGBM (light gradient
boosting machine) (Ke et al., 2017), a data
filtering technique and a nonlinear method,

The foundation of the proposed model lies
in the integration of two powerful
regression techniques: the previously
discussed IKRidge and the GRM,
collectively  referred to as  the
IKRidge-GRM model. To combine these
models, the following relationship was
established:

(13)

to enhance model accuracy. LGBM
employs a histogram-based approach for
decision tree learning, which simplifies data
by discretizing continuous features into
bins. This process not only accelerates
training but also minimizes memory usage
while preserving high accuracy. LGBM is
known for handling large datasets
effectively and providing fast and accurate
predictions. In this study, LGBM was used
to simplify the forecasting process by
focusing on data with higher gradients and
using an automatic feature selection
method. This helped reduce the number of
input variables and identify the most
important ones.

Figure 1. Schematic of IKRidg-GRM model.

AL
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Decomposition method

Decomposition methods play a vital
role in simplifying complex datasets
by breaking them into smaller, more
manageable parts. Decomposition methods
also make the data easier to interpret and
analyze. These techniques also uncover
both high and low-frequency components,
which are essential for enhancing the
accuracy and efficiency of ML models. One
prominent approach for multivariate data
decomposition is the multivariate variational
mode decomposition (MVMD) (ur Rehman
and Aftab, 2019). This method depends on
two key parameters, namely: the total
number of decompositions (ND) and the
quadratic penalty term (). The former
denotes the number of intrinsic mode
functions (IMFs) extracted from the data. It
is notable that setting ND too high can lead
to mode aliasing, where modes overlap.
While a low value for ND results in
incomplete decomposition and insufficient

Z?’:l(PSM,i - P_SM) X (PSF,i - PS

feature extraction. Meanwhile, Y influences
the bandwidth of the IMFs, directly
affecting the quality of the decomposition
process. In order to get trustworthy results,
it is essential to choose the correct values
for ND and . In this research, a trial-and-
error approach was used to identify the
optimal values for these parameters,
ensuring effective decomposition and
improved performance of the model.

Metric performance

The present study uses seven error
metrics to evaluate the ML methods. These
metrics are root mean square error (RMSE),
mean absolute percentage error (MAPE),
correlation coefficient (R), Vicis symmetric
distance (VSD), index of agreement (I),
Kling-Gupta  Efficiency (KGE), and
median absolute error (MdAE), which are
defined as,

T P—— - (14)
(ELA(PSui = PSi)? x S(PSe; — Py )
1 < |PS
MAPE=—Z PSwi = PSril o 100 15
N L PSML (15
MdAE = median;—,,_n|PSy; — PSr, (16)
1 N
RMSE = |~ Z(PSM_i — PSg;)? (17)

i=1

KGE =1 — J(R — 12+ (SD(PSp:)/SD(PSg;) — 1)2 + (PSy/PSp — 1)2 (18)
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YN, (PSp; — PSy,)?

IA=1-

-, 0<IA<1 (19)

L1(|(PSr: = PSp)[ + [(PSu,i — PSu)[)

M 2
(PSm,i — PSg,)

VSD =
= min(PSy i, PSg ;)
1=

Where PSy,; and PSg; are the PS amounts
of measured and forecasted, respectively.
SD is the standard deviation. PS,, and PSr
are the average amounts of PS for measured
and forecasted values.

Case study

The Karun River is the longest and most
important river in Iran, running 950
kilometers through the southwest of the
Khuzestan Plain. Over the past ten years, its
WQ has gotten worse because of factories,
too much water being taken, farming, and
inadequate sewage systems for both
industrial and domestic uses. To take care

(20)

illustrates the locations of stations used to
monitor WQ throughout the Khuzestan
Plain. The study utilized 48 years
(1968-2015) of monthly WQ data collected
from the Farisat station. A total of nine
WQ parameters were analyzed as input
variables, namely: magnesium (Mg), sulfate
(S0;%), calcium (Ca), discharge (Q),
sodium (Na), bicarbonate (HCO3), chloride
(Cl), electrical conductivity (EC), total
dissolved solids (TDS) and pH. Potential
salinity (PS) was selected as the target
variable. A time-series graph of PS is
shown in Figure 3, while Table 1
summarizes the statistical properties of the
data, such as maximum, mean, minimum,

of the river and its ecosystem, it is and standard deviation. The PS was
important to predict WQ accurately. Figure 2 calculated using Eq. (21).
PS=Cl+ (@) 1)
2
Table 1. Statistical analysis of all WQ parameters at the Farisat station.
Parameter Max Min Mean SD
Na (mg/L) 25.04 1.90 9.29 421
Mg (mg/L) 9.61 0.03 3.25 1.35
Ca (mg/L) 17.40 1.75 5.44 2.38
CI (mg/L) 26.80 2.16 9.06 4.08
HCO; (mg/L) 5.26 0.47 2.91 0.68
SO, (mg/L) 20.48 0.52 5.97 3.26
PH 9.00 6.01 7.94 0.35
Q (m¥s) 3016.00 3.71 529.45 498.86
EC (uS/cm) 3980.00 623.00 1766.96 618.25
TDS (mg/L) 2473.00 21.38 1129.08 400.42
PS 31.40 2.93 12.05 5.11

Yy
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Model development

To predict potential salinity (PS) at the
Farisat station, advanced and -carefully
designed models were employed. The
framework incorporated four cutting-edge
ML models: IKRidge-GRM, Ridge, Deep
ELM (DELM) (Fayaz, and Kim, 2018),
and LSSVM. Additionally, the methodology
utilized the LGBM feature selection

Data preprocessing |

Collecting dataset

technique alongside the MVMD
decomposition method. The primary
objective of the study was to predict PS
values three months into the future (t + 3).
The proposed framework to forecast the PS
parameter is displayed in Figure 2. The
model development process was structured
into three key stages, which are described
as follows,

Feature selection method, o "/T r"‘\f\"’\ Decompoesition method
.05, N _/l
<0
o, S A PN
i ) 5 o o = J
o5 mED) (mez) (mFs) . . J(CMFK) /
Compare with ML models
LSSVM DELM

[ Select the best model J

Graphical analysis

-2 M, o
! * ‘
i U

T2

4 iz
R
4 N
s

\ ' 4 - .\\. |
\ | Applying the IKRidge-GRM to forecast PS | aup f
! \ /
.‘\ e 7 ’/'

Figure 2. Proposed framework to forecast the PS.

Determination of input variables using
feature selection

In the present research, the optimal input
variables were identified using the LGBM
model for feature selection. This method
determines the most critical time delays,
with each input variable incorporating a 10-

A

time lag. The selected features for the
Farisat station along with their importance
scores are depicted in Figure 3 (A) and (B).
For example, Table 2 lists the most
significant features for forecasting PS(t+3).
At the Farisat station, a total of 20 PS-
related features were identified as the most
relevant.
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Figure 3. Selected features for (A) simple and (B) MVMD-based models.

Table 2. Selected features for simple-based models.

Target

Selected input features

PS (t+3)

PS(t-9), PS(t-3), Ca(t-9), PS(t), Ca(t), PS(t-4), Mg(t-5), Mg(t-6), Mg(t-9), Ca(t-8), HCO3(t-6),
Heo3(t-5), PS(t-5), PH(t), Mg(t), PS(t-1), HCO3(t), Ca(t-3), Ca(t-5), Ca(t-6), Ca(t-3)

Decomposition of input variables

This study utilized the MVMD method
to decompose input features. The MVMD
method simplified the signals before
feeding them into the ML models for hybrid
implementation. The key adjustable
parameters for the MVMD method were the
mode decomposition factor (ND) and the
penalty variable (). These parameters
were determined through a trial-and-error
approach, with the optimal values identified
as ND = 8 and 1 = 420. A total of 160 input
variables were decomposed using MVMD
(8 IMFs x 20). To further refine the data,
the LGBM model was applied to select the
most significant features, reducing the
dimensionality by retaining only 35% of the
total variables. This process resulted in 56
selected features, as illustrated in Figure
2 (B), which were used for PS forecasting.

Adjustment of ML models

Tuning the hyperparameters of ML
algorithms is a critical aspect of model
development. Relying on solutions derived
from local optima can result in less accurate
models and biased evaluations of

114

forecasting methods. Therefore, employing
advanced and robust optimization methods
is essential for effectively addressing
complex optimization problems (Abdollahi
and Ahmadianfar, 2021; Ahmadianfar,
Bozorg-Haddad et al., 2020; Ahmadianfar
et al, 2021). This study utilizes the
welghted meaN oF VectOrs (INFO)
optimizer (Ahmadianfar, Heidari, et al.,
2022). The INFO is an advanced algorithm
that enhances ML models by balancing
exploration and exploitation. The INFO
updates vector positions through three key
processes, namely: an updating rule for
generating new vectors, vector combination
for refining solutions, and a local search for
avoiding suboptimal results. These processes
are designed to improve convergence,
accuracy, and to find optimal solutions
efficiently. Therefore, the INFO method
was employed in this study to optimize the
key hyperparameters of the IKRidge-GRM
model. Additionally, other ML models,
such as LSSVM, Ridge, and LSSVM, also
utilized the parameter adjustments provided
by the INFO approach. As a result, the
optimal parameter values for both the
simple ML models and the OMVMD-based
ML models are presented in Table 3.
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Table 3. Optimal parameter values determined for all ML models.

WQI Methods Values of parameters
. a, = 1.62E + 09, a, = 4.13E + 08, a; = 3.01E + 08, p; =2.44E+09
IKRidge-GRM 1 38F + 04, p, = 1.42F + 04
. LSSVM y=213E+01,0 =4.12E + 03
Simple
DELM NoNr = [300, 300], aFc = selu, RegF = 1.21E-03
Ridge Ridge cefficient = 183
L a, =4.92E + 04, a, = 2.00E + 06, az = 8.55E + 05, p; =9.71F — 01
IKRidge-GRM " _ 1 98F + 04, p, = 1.83F + 04
LSSVM y=312E+ 03,0 = 2.11E+ 03
MVMD
DELM NoNr = [5000, 5000], aFc = selu, RegF = 4.32E-04
Ridge Ridge cefficient = 0.15

NoNr * = Number of neurons, aFc* = Activation Function, Neuron number, RegF * = regularization factor

Result and discussion

Assessment of ML models

statistical metrics

using

Table 4 compares the performance of
various models based on several metrics,
including R, RMSE, MAPE, 1A, MdAE,
and KGE. Among the models, the MVMD-
IKRidge-GRM consistently demonstrated
the best performance across both training
and testing datasets. The MVMD-IKRidge-
GRM achieved the highest R values with
0.982 for training and 0.977 for testing. The
remarkable R values denote a robust

connection between anticipated and
observed values, indicating that the model
proficiently captures the fundamental

patterns in the data. Additionally, the
MVMD-IKRidge-GRM had the lowest
RMSE (0.737 for training and 0.956 for
testing) and MAPE (6.580 for training and
4.521 for testing), reflecting its comparable
accuracy and predictive reliability. The I
values (0.991 for training and 0.988 for
testing) and KGE scores (0.953 for training
and 0.948 for testing) further confirmed its
robustness and overall effectiveness. These
metrics collectively highlight the MVMD-
IKRidge-GRM as the most accurate and
reliable model.

VY-

In contrast, the baseline models (e.g., the
IKRidge-GRM, LSSVM, DRVFL, and Ridge)
performed significantly worse, with much
lower R values (e.g., 0.392 for the IKRidge-
GRM and 0.312 for Ridge in testing) and
higher RMSE and MAPE values. The
models' inadequate ability to capture data
dependencies is shown by these lower
correlation coefficients, leading to inferior
predicted accuracy. These baseline models'
much higher RMSE and MAPE values
suggest that their forecasts are unreliable.
As an example, the RMSE and MAPE of
the IKRidge-GRM were 4.310 and 20.923,
respectively, which were much higher than
those of the MVMD-IKRidge-GRM. These
results highlighted the enormous potential
for improvement in the conventional methods.
The MVMD-enhanced versions of these
models (e.g., the MVYMD-LSSVM, MVMD-
DRVFL, and MVMD-Ridge) showed notable
improvements over their non-MVMD
counterparts, with higher R values and lower
errors. The MVMD-LSSVM achieved an R
value of 0.967 and an RMSE of 1.165 in
testing, which demonstrated a substantial
enhancement. However, their performance
was still inferior to that of the MVMD-
IKRidge-GRM. Overall, the MVMD-
IKRidge-GRM was the best-performing
model, offering the most accurate and
reliable predictions across all metrics.
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Assessment of ML models using scatter
plot

Figure 4 compares the performance of
four models (the IKRidge-GRM, Ridge,
DRVFL, and LSSVM) based on their
prediction intervals (PI) and the alignment
of forecasted versus measured values
(scatter plot). The prediction interval (PI)
quantifies the uncertainty in predictions,
with lower PI values indicating higher
confidence and precision. The PI value for
the IKRidge-GRM was 3.61, suggesting the
proposed model had the most precise
predictions with minimal uncertainty. The
data points for the IKRidge-GRM were
closely aligned with the 45-degree line,
indicating strong agreement between
forecasted and measured  values.
Additionally, the upper and lower bounds
of the prediction interval were narrower

compared to the other models, further
emphasizing its  superior  predictive
accuracy and reliability.

In contrast, the other models (the Ridge,
DRVFL, and LSSVM) exhibited higher PI
values of 4.85, 4.32, and 4.33, respectively.
The PI values for the mentioned models
indicated greater uncertainty in their
predictions. Ridge performed the worst,
with the largest PI and a wider spread of
data points around the 45-degree line,
reflecting lower accuracy. The DRVFL and
LSSVM performed slightly better than
Ridge but still fell short of the IKRidge-
GRM in terms of precision and alignment
with the measured values. Consequently,
the IKRidge-GRM was the best-performing
model in this comparison, offering the most
accurate and reliable predictions with the
least uncertainty.

Table 4. Statistical results of simple- and MVMD-based methods.

Model R RMSE MAPE 1A MdJAE KGE
train 0.982 0.737 6.580 0.991 0.500 0.953
MVMD-IKRidge-GRM
test 0.977 0.956 4.521 0.988 0.535 0.948
train 0.581 3.296 33.295 0.673 2.194 0.369
IKRidge-GRM
test 0.392 4310 20.923 0.590 2.335 0.286
train 0.981 0.758 6.420 0.990 0.483 0.948
MVMD-LSSVM
test 0.967 1.165 6.157 0.982 0.759 0.946
train 0.592 3.143 28.604 0.696 1.869 0.401
LSSVM
test 0.374 4.989 22.208 0.538 3.144 0.207
train 0.983 0.721 6.125 0.991 0.501 0.953
MVMD-DRVFL
test 0.967 1.139 5.878 0.983 0.731 0.952
train 0.510 3.359 30.534 0.636 2.039 0.322
DRVFL
test 0.358 4.505 21.404 0.529 2.279 0.207
train 0.983 0.736 6.393 0.991 0.522 0.946
MVMD-Ridge
test 0.959 1.277 6.887 0.978 0.853 0.949
train 0.569 3.576 33.227 0.333 2.278 0.058
Ridge
test 0.312 6.996 32.666 0.440 5.433 0.014

AR}
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Figure 4. Scatter plot for all ML methods.

Assessment of ML models using relative
error plot

Figure 5 presents violin plots comparing
the relative error distributions of four
models, namely: the IKRidge-GRM, Ridge,
DRVFL, and LSSVM. Among the models,
the IKRidge-GRM demonstrated the most
compact and symmetric error distribution,
with a minimum relative error of -0.20 and
a maximum of 0.24. The figures indicated
higher accuracy and consistency compared
with other tested models. The Ridge model
exhibited a wider spread, with a minimum
error of -0.60 and a maximum of 0.15,
reflecting greater wvariability and less
reliability. Similarly, the DRVFL and
LSSVM model showed larger error
ranges, with the DRVFL model spanning
from -0.49 to 0.27 and LSSVM from -0.63
to 0.25. The boxplots within the violins
further highlighted that the IKRidge-GRM
had the

smallest interquartile range.
Consequently, the IKRidge-GRM
outperformed the other models by

achieving the most precise and stable
predictions.

Yy

Assessment of ML models using relative
Taylor diagram

The Taylor diagram visually compares
the performance of four models (the
IKRidge-GRM, Ridge, DRVFL, and
DELM) against a reference dataset based on
three metrics, namely: standard deviation,
correlation coefficient, and centered root
mean square error (CRMSE). From Figure 6,
the IKRidge-GRM was the best-performing
method, as it was closest to the reference
point (red square) in terms of both correlation
coefficient and standard deviation. It achieved
a high correlation coefficient (close to 1.0),
indicating strong agreement with the
reference data. The IKRidge-GRM’s standard
deviation closely also matched the reference
value, reflecting accurate  variability
representation. In contrast, the Ridge,
DRVFL, and DELM model were farther from
the reference point, with slightly lower
correlation coefficients and deviations from
the reference standard deviation. Based on
these results, the IKRidge-GRM demonstrated
the best balance of accuracy, variability
representation, and error minimization, making
it the most reliable model in this comparison.



Ol g lid 13 dgrame [ on 31 03w b O CasS ol )by o yiins

Relative error

Min:'-0.60

Min:*-0.63

IKRidge-GRM

Ridge

DRVFL LSSVM

Figure 5. Violin plot of relative error for four ML methods.
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Figure 6. Taylor plot for four ML methods.

Assessment of ML models using residual
distributions plot

Figure 7 compares the residual distributions
of four models, namely: the IKRidge-GRM,
Ridge, DRVFL, and LSSVM. The IKRidge-
GRM model exhibited the smallest mean
residual (-0.0073), indicating the least bias,
and the lowest standard deviation (0.0613),
suggesting the highest precision. Additionally,
its skewness (0.0428) was close to zero,

Yy

indicating a nearly symmetric residual
distribution. In contrast, the other models
(Ridge, DRVFL, and LSSVM) had higher
standard deviations and more pronounced
negative skewness, indicating less precision
and asymmetry in their residuals. Based on
these metrics, the IKRidge-GRM model
was the best-performing model, as it
demonstrates the most accurate and
consistent residual distribution.
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Residual Values

Model Mean Std Dev Skewness
IKRidge-GRM -0.0073 0.0613 0.0428
Ridge -0.0219 0.0948 -1.9292
DRVFL -0.0179 0.084 -1.2276
LSSVM -0.0247 0.0914 -2.3086

Figure 7. Density distribution of residual values for four ML methods.

Conclusion

This study developed a novel ML model
named IKRidge-GRM, which combines
generalized ridge regression with kernel
ridge regression, incorporating a regularized
locally weighted approach. Indeed, the
main novelty of this research is the
development of a new ML model
(IKRidge-GRM) for forecasting the PS
parameter. The proposed method employs a
set of regulated weights and the GRM
model to improve prediction accuracy. The
proposed framework model employed an
LGBM-based optimization technique using
the INFO algorithm to achieve optimal
input variable selection. Furthermore, the
MVMD method braked down input variables,
enhancing prediction accuracy. Unlike
existing methods, this hybrid model
uniquely integrates feature selection, input
variable decomposition, and an advanced
ML framework. The primary objective was
to improve computational efficiency and
stability while delivering a more precise
and dependable solution for the WQ
prediction.

The IKRidge-GRM model was utilized
to predict the PS parameter at the Farisat
station in Iran, demonstrating superior

1Y€

performance compared to both standard
models and those enhanced with MVMD.
The integration of MVMD significantly
boosted the model's effectiveness, achieving
an impressive testing R value of 0.977 and
an RMSE of 0.956. These results
highlighted the model's capability to
uncover complex data patterns and produce
highly reliable predictions. The MVMD-
IKRidge-GRM model has proven to be a
powerful tool for precise environmental
forecasting, offering a robust framework
for addressing challenges in predicting
environmental parameters. Its ability to
integrate advanced decomposition techniques
like MVMD with ML ensures improved
accuracy and stability, making it a valuable
approach for handling complex datasets.
Furthermore, the model's consistent
performance across various parameters
underscores its adaptability and reliability,
positioning it as a promising solution for
environmental monitoring and decision-
making processes. By combining innovative
methodologies, the IKRidge-GRM model
sets a new benchmark for predictive
accuracy in environmental studies.

Future research could focus on
integrating the IKRidge-GRM model with
deep learning or hybrid approaches to better
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capture temporal and spatial dependencies
in environmental data. Expanding its
application to  diverse environmental
parameters, locations, and extreme conditions
can validate its robustness.
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