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Landslides is one of the most important natural disasters that cause
excessive human and financial losses in mountain areas worldwide. There
are appropriate methodologies for assessing risk and determining the
effective risk factors associated with them. In this study, the maximum
entropy by three replications was applied in Maxent software to investigate
landslide susceptibility in the southern areas of lIran, Fars Province.
To prepare the landslide susceptibility map, 13 factors were used:
lithological units (Lu), land use/land cover (LULC), slope percentage (Sp),
slope aspect (Sp), altitude, plan curvature (Plan-C), topographic wetness
index (TWI), distance to river (DTg), distance to roads (DTgs), distance to
fault (DTg), drainage density (DD), normalized difference vegetation index
(NDVI), and annual mean rainfall (AMR). After proving the lack of
multicollinearity among the effective factors using tolerance (TOL) and
variance inflation factor (VIF) indicators. On the other hand, the weighting
of these 13 factors was determined using the AHP model. The results of the
AHP method show that "Litho logical units, Land use-cover and Slope
percentage” are the most important influencing factor the occurrence of
landslides in the study area. In real, three affecting factors ranked first to
third in order of importance in the study area. Some of the landslide points
were used for evaluate the built model according to the ROC/AUC
indicator, in the other word, since 30% of the landslide points not used in
modeling were randomly selected and used for evaluation. In addition, the
final map of the landslide susceptibility by three replications had a
good accuracy, whereas the third iteration with an AUC value of 0.778
(ROC=77.8%) had the highest accuracy in preparing the landslide
susceptibility map. After that, the evaluation of landslide susceptibility
maps with the second and third iterations with AUC values of 0.77
(ROC=77%) and 0.640 (ROC= 64%), respectively, had good and moderate
accuracy with the highest efficiency in predicting landslide sensitivity.
Finally, the highest percentage of landslide susceptibility area according to
the first, second and third repetitions respectively in the moderate
sensitivity class (0.03-0.1) with the value of 26.14%, the moderate
sensitivity class (0.04-0.4). With a value of 25.91% and also in the
moderate sensitivity class (0.04-0.1), there was the highest percentage of
landslide area with a value of 25.71%. In general, landslides, due to their
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dangerous nature in the highlands, suddenly disrupt the morphology
and cause major damage to residential areas, roads, agricultural lands,
etc. Therefore, landslides are a complex process that has a devastating
effect on the environment and human life and requires investigation and
preventive measures.
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Introduction

The inconsistency of natural slopes is
a geomorphological and geological
phenomenon that has an advantageous
role in changing the shape of the Earth's
surface and is very important because of
the recurrence of this phenomenon and
its harmful damage (Komac, 2006). The
production of maps or forecasts of
vulnerable areas on landslides is very
important to prevent landslides and
future plans for land use (Park, 2015).
Landslide pattern analysis has played an
important role in evaluating the
structures and functions of various
forms and forces in  mountain
ecosystems (Lopez et al., 2011). In the
other hand, risk management and
danger assessment of landslides begins
with comprehensive identification and
mapping, and this can be used to gain
knowledge of spatial and temporal
distribution (Brardinoni et al., 2003).
In recent decades, owing to advances
in  computer sciences, geographic
information systems (GIS) have been
widely used to prepare and manage
the affecting factors (e.g., slope,
aspect, elevation, roads, rivers, etc.) on
landslide susceptibility. Several studies
have been conducted on landslide
susceptibility assessment using remote
sensing and GIS techniques (Pradhan
et al., 2010; Regmi et al., 2014). Many
qualitative and quantitative methods can
be applied to landslide susceptibility
evaluation (Faiz et al., 2018). Qualitative
methods include inventory and
knowledge-based  methods.  These
mental methods are rarely used today.
However, quantitative methods, which
are based on physical data-based
methods, are very effective in predicting
landslide occurrence in spatial and
temporal areas. These methods require
precise geological engineering data,
which are important for collecting large
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areas (Schiliro et al., 2016). As a result,
machine learning and soft computing
methods have been widely applied to
assess landslide sensitivity (Youssef
et al., 2014; Elkadiri et al., 2014;
Rahmati et al., 2019; Chen et al., 2019;
Pandey et al., 2019). The Production of
landslide maps describes past and
current  landslide occurrence, and
mapping the spatial possibility of
future landslide occurrence, landslide
susceptibilities and risks are of great
importance for land use planning, civil
engineering works and decision making
for landslide management (Broeckx
et al., 2016; Bordoni et al., 2015; Pham
et al., 2019), and GIS and RS integrated
approaches used for the development of
landslide susceptibility maps include the
Frequency ratio (Shahabi et al.,
2014; Wang et al., 2016). Discriminant
Analysis, Analytic Hierarchy Processes
(Pourghasemi  and  Rossi, 2016;
Zhang et al., 2016), Logistic Regression
(Shahabi et al., 2015; Tsangaratos et al.,
2017), Bivariate Statistics (Youssef
et al., 2015), Multivariate Regression
(Conoscenti et al., 2015; Wang et al.,
2015), Multivariate Adaptive Regression
Splines (Felicisimo et al., 2013; Wang
et al., 2015), Weights of Evidence
(Kayastha et al., 2012; Tsangaratos
et al., 2017), Weighted Linear Combinations
(Akgun et al, 2008; Shahabi and
Hashim, 2015), Evidential Belief
Functions (Bui et al., 2015; Pourghasemi
and Kerle, 2016) and Generalized
Additive Models (Chen et al., 2017;
Park and Chi, 2008). In addition to the
above models, there are other methods
such as artificial neural networks (Bui
et al., 2016b; Dou et al., 2015), neuro-
fuzzy (Nasiri Aghdam et al., 2016;
Pradhan, 2013), boosted regression trees
(Hong et al., 2015; Youssef et al.,
2016), naive Bayes (Pham et al., 2017;
Shirzadi et al., 2017), decision trees
(Pham et al., 2016; Tsangaratos and llia,
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2016), and random forests (Chen et al.,
2014; Hong et al., 2016) have also been
applied for the development of landslide
susceptibility maps.

The main objectives of the present
study is to understand the characteristics
of landslides, knowing the affecting
factors, studying  multi-collinearity
between layers using TOL and VIF,
accordingly selecting essential factors
on landslides among the affecting
factors on landslide susceptibility (Lu,
LULC, Sp, Sa, Plan-C, TWI, DTg,
DTrs, DT¢, DD, NDVI, and AMR)
and prioritizing effective mentioned
variables applying decision model such
as "Analytic Hierarchy Processes" in the
north of Fars province in Iran, also one
of the most important innovations of
this research is preparing landslide
susceptibility map based on three
repetitions (R1, R2 and R3) using
maximum entropy in the Maxent
software and finally selection the best
repetition in the landslide map using
AUC-ROC as a result, is chosen high
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quality susceptibility map for landslide
assessment in the study area. Choosing
the best landslide assessment method
helps managers and politicians identify
landslide-sensitive areas based on
similar conditions in the past, so they
can take steps to prevent landslide
sensitivity in sensitive areas.

Materials and Methods
Study area

The study area is located in southern
Iran, Fars Province, at 30° 3' 31" " to
30°, 32' 16" N and 51° 21' 37" to
52° 46' 14" " (Fig. 1). The area of Fars
Province is approximately 122 thousand
square kilometers which is 7.5% of the
total area of Iran. The study region
consists of four main watersheds,
including the Karon Watershed,
Dorodzan Dam Watershed, Zohreh
Watershed, and  Tashk-Bakhtegan
Watershed in Fars Province.
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Fig. 1. The study area in Fars Province.

A flowchart of this study is shown in
Fig. 2. The summary of the method and
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material for this research includes the

following steps:
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Random
selection

and Training
(70%)

Modeling
(Maximum Entropy model)

(Testing (30%)

ROC/AUC and
Spatial modeling

2

Preparation of control
layers using ArcGIS.
10.6.1

index (TWI), Distance to river
(DTy), Distance to roads
(DTRys), Distance to Fault
(DTy), river Density (RD),

Litho logical units (Lu), land
use-cover (LU-C), slope
percentage (Sp), slope aspect
(S,), altitude, Plan curvature

(Plan-C), Topographic wetness

Normalized diff erence
vegetation index (NDVI) and

annual rain (AR)

Using 3
repetitions
in Maxent

software

Multicollinearity study
using TOL and VIF

Determining the
importance of
effective factors

HH

on landslides
: using AHP :

Providing research suggestions to reduce landslide susceptibility in the study

area

Fig. 2. The flowchart of the methodology practical in the study area.

Explanation of the landslide data

This study was based on a set of
GIS-based data, which included the
location of landslides and the factors
influencing landslide occurrence
mapping (LOM). Accordingly, a
landslide  distribution  map  was
constructed through extensive field
surveys and in total, 88 landslides were
identified in the study area. The
landslides were randomly divided into
two groups data set including, modeling
and validation (Kornejady et al., 2019;
He et al., 2019). In the present study,
the ratio between modeling and
validation was  selected  70:30,
respectively. In addition, in our
research, we created a landslide
occurrence map according to three
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replications in the Maxent software
(Rahmati et al., 2019; Chen et al., 2019;
Pandey et al, 2019), 13 landslide
influencing factors, including (Lu),
(LULC), (Sp), (Sa), altitude, (Plan-C),
(TWI)’ (DTR)I (DTRS)! (DTF)! (DD),
(NDVI), and (AMR) were selected and
mapped in ArcGIS 10.6.1.

Altitude, Slope percentage (Sp), Slope
aspect (Sa), Topographic wetness index
(TWI), Plan curvature (Plan-C)

Because of the close connection of

the landslide with the altitude
(Meinhardt et al., 2015), a digital
elevation model with a spatial

resolution of 12.5 m was extracted from
ALOS-DEM and used in this study
(Fig. 3). The altitude variable specifies
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the spatial distribution of landslides. In
addition, altitude indirectly affects
landslide  occurrence  through its
important role in rainfall characteristics
and vegetation type (He et al., 2019).
Also, the probability of landslide
occurrence is directly related to the
slope angle (Nefeslioglu et al., 2008).
The Slope percentage is indirectly
related to the occurrence of landslides
by affecting soil moisture and
subsurface flow (Parker et al., 2016).
The slope aspect has an important effect
on wind and rain to be exposed to
sunlight, so it shows the effective
characteristics of the slope constituents
(Galli et al., 2008). In general, the
direction factor has an effect on other
factors such as weathering, weather
conditions, lands and soil cover, which
is one of the important factors in
landslide occurrence (He et al., 2019).
In this study, the map of the slope
aspect and slope angle were taken from
the DEM (Fig. 3). TWI is another
important factor in predicting landslide
sensitivity and shows soil conditions
and runoff volume (He et al., 2019).
The TWI map was prepared from the
DEM using the SAGA-GIS software
(Fig. 3). Plan curvature describes the
morphology of the topography. In
particular, the slope curvature of the
perpendicular line is the maximum of
the slope in the direction of the domain,
which makes it possible to highlight the
convergence (concave curvature) and
divergence (convex curvature) of the
water flow (Trigila et al., 2015). In the
other words positive values represent
convex, and negative values represent
concavity. In this study, plan curvature
was derived from a DEM with 12.5 a
spatial resolution (Fig. 3).

Drainage density (DD), Distance to
river (DTR)

Drainage density is the ratio of the
total length of waterways to the

oA

watershed area. The higher the drainage
density, the lower the permeability and
the higher the surface flow rate (Yalcin,
2005). The drainage density map was
extracted from the waterway lines and
prepared using Spatial Analyst Tools in
ArcGIS 10.6.1. In areas adjacent to
rivers, due to the hydrological network,
rapid soil saturation, and groundwater
recharge, landslides are far greater than
in areas farther away from rivers. There
is a strong correlation between river
distance and landslide susceptibility.
This distance indirectly describes the
erosion power of streams (Erener and
Dilzgun, 2010). The DTg map was
extracted from the waterway map and
prepared using Spatial Analyst Tools
and "Distance™ in the Arc.GI1S10.6.1
environment (Fig. 3).

Distance to roads (DTgs), Distance to
fault (DTg)

Road construction is a human factor.
Roads are generally built on slopes that
limit the area behind the slope and
develop cracks in the structure of the
toes backing, such as faults (He at al.,
2019). Therefore, distance to roads is
one of the most important factors in the
study of landslides (Liu et al., 2004).
Fault surfaces easily occur on sliding
surfaces because the stress on the rock
surrounding a fault is unstable.
Landslides repeatedly occur along
surface ruptures (Yalcin et al., 2011).
The distance to faults and road were
determined from the fault map of the
case study using "Distance Tools" in
ArcGIS 10.6.1 (Fig. 3).

Lithological units (Lu)

The lithology of the area plays a
very important role in assessing the
sensitivity of landslides (Zhang et al.,
2016). This is because lithology has a
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significant effect on the hardship and

2018). An explanation of the lithology
weathering  of  rocks.  Different

units in the study area is presented in

lithological units have different effects

Table 1.

on landslide outbreaks (Chen et al.,

Table 1. Lithology of the study area.

. o Lithological
Formation Description units Age
- Low level pediment fan and valley terrace deposits Qft2, Qcf Quaternary
Brown to grey, calcareous, feature-forming Mur, MuPlaj
Aghajari, Mishan sandstone and low weathering, gypsum- veined, red Mmr; MPIf ' Miocene
marl and siltstone ' 9p
Alternating hard of consolidated, massive, feature
Bakhtyari forming conglomerate and low -weathering cross - Plc, Plbk Pliocene
bedded sandstone
Massive to thick - bedded, dark - grey, partly reef
Jamal, Dorud type limestone and a thick yellow dolomite band in Pj, P Permian
the upper part
- . . Oligocene-
- Marl with intercalations of limestone OMgm, OM(ql Miocene
Thin to medium bedded argillaceous limestone and Klsm. Kisol
Taft thick bedded to massive, grey orbitolina bearing ' ! Early Cretaceous
- Klsm, Ktl
limestone
Grey and brown weathered, massive dolomite, low
Jahrum weathered thin to medium -bedded dolomite and Eja, EK Eocene
massive, feature forming, buff dolomitic limestone
Shemshak Dark grey shale and sandstone TRJs Triassic-Jurassic
Lower Red Red and green silty, gypsiferous marl, olm.s.c Oligocene
sandstone and gypsum
. . Early-Middle
Shotori Well - bedded, dense, yellow dolomite TRsh Triassic
. Bluish grey marl and shale with subordinate thin -
Gurpi bedded argillaceous -limestone Kou Cretaceous
. Sandstone, quartz arenite, shale and fossiliferous .
Naiband limestone TRn Mesozoic
Undivided Khami Group, consist of massive thin -
) bedded limestone comprising the following JKKkgp, Jurassic-
formations: Surmeh,Hith Anhydrite, Fahlian, KEpd-gu Cretaceous
Gadvan and Dariyan
Khamehkat and T_hln to medium - b_edded, dqu grey dolomlt_e; TRel, TRkk- o
- thin - bedded dolomite, greenish shale and thin - Triassic
and Neyriz - : nz
bedded argillaceous limestone
Tarbur Massive, shellyi _chf_f - forming partly Ktb Late Cretaceous
anhydritic limestone
i Undivided Asmari and Jahrum Formation, EOas-ia Paleocene-
regardless to the disconformity separates them ! Oligocene
Baghamshah Pale - green silty shale and sandstone Jbg, Jf Jurassic
- . . . . pCmitl, :
Amphibolite Facies Medium-grade, regional metamorphic rocks oCmit2 Pre Cambrian

o4
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Continue Table 1.

Formation Description L|th0|(_)g|ca| Age
units
. Alternation of shale, marl and fossiliferous limestone, .
Shidhtu loccaly with intercalations of quartz arenite Dsh Devonian
Blue and purple shale and marl interbedded with the
Pabdeh argillaceous limestone PeEpd Paleogene
Dark olive - brown, low weathered siltstone and
. - Cretaceous-
Amiran sandstone with local development of chert KPeam
. Paleocene
conglomerates and shelly limestone
Fluvial conglomerate, Piedmont conglomerate Pliocene-
- PIQc
and sandstone Quaternary
Rock salt, gypsum & blocks of contorted masses of
sedimentary material such as black laminated fetid Pre Cambrian-
- limestone, brown cherty dolomite, red sandstone & pC-Ch .
: - " S Cambrian
varigated shale in association with igneous rocks
such as diabase, basalt, rhyolite and trachyte
- Granite PZ2gr Late Paleozoic
Late
- - Lak -
axe Eocene-Oligocene
Kerman and Neyzar ~ Purple and red thin - bedded radiolarian chert with Triassic-
S - - o - TRKurl, pd
Radiolarites intercalations of neritic and pelagic limestone Cretaceous
ngﬁ&g?mn Gneiss, anatectic granite, amphibolite, kyanite, Pz imt Early Paleocene
Rutchan Complex staurolite schist, quartzite and minor marble
- Gneiss and anatectic granite Pzign Early Paleozoic
Sachun Pale red marl, marlstone, I!mestone, PeEsa Paleocene-Eocene
gypsum and dolomite
Lalun Dark red meddium - gral_ned ark05|_c to subarkosic cl Cambrian
sandstone and micaseous siltstone
Sargaz Complex Mica schist, green schlst_, graphite schist, black DC2met Devonian-
pyyllit and minor marble Carboniferous
Thick - bedded to massive dolomitic limestone, thin Early Middle
Surmeh . - Jsm .
- bedded argillaceous limestone and marl Jurassic

Land use/ land cover (LULC)

Land use is of particular importance
in slope instability and is highly related
to landslide susceptibility (Zhao et al.,
2015). In general, bare lands are more
vulnerable to erosion than forested areas
because the roots of the plants act as
reinforcements and therefore prevent
soil erosion (Begueria, 2006). The land
use map was taken from the Fars
Natural Resources Department and
updated using Google Earth (Fig. 3 and
Table 2).

T

Normalized difference vegetation index
(NDVI)

NDVI is a vital factor that is widely

used to investigate the relationship
between  vegetation density and
landslide  susceptibility  (Leventhal
and Kotze, 2008). The Landsat 8
images (July and April, 2016)
extracted from the USGS site

(https://earthexplorer.usgs.gov/) and the
NDVI map was prepared in
ArcGIS10.6.1 environment (Eg. 1)
(Pourghasemi et al., 2014).
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NDVI =B5-B4/B5 + B4 (1)

where B5= NIR and B4= Red, NIR
and Red are the infrared and red
portions of the electromagnetic
spectrum, respectively.

Annual mean rainfall (AMR)
Rainfall is considered to be the most

common cause of landslides, and
rainfall-triggered landslides have caused
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significant damage to agricultural lands,
communication infrastructure, production
of rangeland biomass and other
properties, and the Earth's thrust level is
saturated from the bottom (Lumb, 1975;
Duc, 2012). The annual mean rainfall
data were obtained from the Fars
Regional Water Organization in—
2001-2018 and the annual mean rainfall
map was prepared using the inverse
distance weighting (IDW) interpolation
method (Hong et al., 2016) (Fig. 3).
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Fig. 3. Landslide effective factor maps used in this study.

Assignment  of
factors using AHP

weighting effective

The hierarchical analysis process is
one of the most famous multi - attribute
decision - making techniques (Bowen,
1993). AHP is a measurement concept
of a pairwise comparison matrix (PCM)
and is based on the judgment of experts
to obtain the priority weight. The PCM
is calculated based on weights 1 to 9
(Table 2), which shows the importance
of the map to other points (Saaty, 1999).
The main principle for comparing order
is that a consistency ratio (CR) of
exactly 0.1, which does not indicate a

y

satisfactory matrix, and a ratio higher
than 0.1 indicates that the PCM should
be changed (Mundalik et al., 2018). The
Cl was calculated as follows:
CI=Amax-n/n-1 (2)
Where n represents the number of
rows or columns in the comparison
matrix (number of criteria). If the
adjustment factor is equal to or less than
0.1, compatibility is required in
arbitration (Malczewski, 1999). The
coefficient in the present study was less
than 0.1 (0.05) which was acceptable.
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Table 2. AHP scale (Saaty, 2008).

Scale 1 2 3 4 5 6 7 8 9
Importance Equal Weak Moderate Moderate Strong Strong - Very Very, Extreme
plus plus strong  very strong

Maximum entropy (MaxEnt) algorithm

The MaxEnt model is a machine
learning-based data mining technique
that assesses the likelihood of risk
distribution in relation to environmental
factors using presence-only points/
locations of hazards (Phillips et al.,
2006; Yang et al., 2013). This model
has a general method for estimating the
probability distribution of hazards that
has been proven in practical studies
(Elith et al., 2006; Yost et al., 2008).

Model evaluation method

To evaluate the accuracy of the
built models, a receiver operating
characteristic (ROC) curve was used
(Chang-Jo and Fabbri, 2003). In other
words, the area below the ROC (AUC)
curve is useful for quantifying
uncertainty in model predictions (Zipkin
et al., 2012). Predictive performance is
an essential step for model accuracy in
predicting a validation data set (30% of
the points do not use the training
process) (Tien Bui et al., 2012). In
short, the most ideal model has the
highest AUC and values (AUC) ranging
from 0.5 to 1 (Yesilnacar, 2005).

Results

Multicollinearity Analysis (McA)
Tolerance (TOL) and VIF indices

were used for  multicollinearity

evaluation among the effective factors
(Table. 3). In this study, there was a

¢

negative correlation between tolerance
and VIF indices (Hong et al., 2016;
Wang et al, 2019). Therefore,
according to the table, there is no VIF
value above 10 or the TOL value is
<0.1, because these two indicators
represent collinearity among layers.
Therefore, the use of 13 controllers'
variable landslides is permitted in the
modeling process. Quantitative and
qualitative factor layers were introduced
into the MaxEnt environment in ASCII
format and CSV landslide inventories.

Determining the important parameters
on which the landslide occurred

In the present study, the AHP
method was used to investigate the
weighting and determine the important
parameters in the occurrence of
landslides in the northern part of Fars
Province. The AHP results are
summarized in Table. 4. As shown in
the table, in this study, 13 layers
affecting the landslide sensitivity were
used (e.g., (Lu), (LU-C), (Sp), (Sa),
altitude, (Plan-C), (TWI), (DTg),
(DTrs), (DTg), (RD), (NDVI) and
(AR)). (Lu), (LU-C), and (SP) variables
have the first to third ranks in
importance/ value on the occurrence of
landslides in  the study area,
respectively, and the (SA), altitude,
(Plan-C), (TWI), (DTR), (DTRS),
(DTF), river density (RD), (NDVI),
(AMR), (Lu) and (LU-C) variables have
the fourth to thirteenth rank in terms of
significance on the landslide events.
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Table 3. Multicollinearity analysis for the landslide affecting factors.

Coefficients?

Unstandardized
Coefficients

Standardized
Coefficients

Collinearity Statistics

Model t Sig.
B Std. Error Beta Tolerance VIF
(Constant) -4.361 1.077 -4.051 0.000
Altitude -8.694E-5 0.000 -0.067 -0.801 0.425 0.856 1.168
Distance to river -8.978E-5 0.000 -0.178 -2.040 0.044 0.796 1.257
River density 0.117 0.074 0.138 1579 0.117 0.797 1.255
Distance to roads -7.092E-5 0.000 -0.234 -2.730  0.007 0.826 1.211
Slope percentage 0.008 0.005 0.155 1.849  0.067 0.866 1.155
TWI -0.008 0.018 -0.040 -0.468 0.641 0.833 1.201
Slope aspect -0.014 0.020 -0.057 -0.704  0.483 0.934 1.071
Distance to fault -3.411E-7 0.000 -0.001 -0.015 0.988 0.896 1.116
Litho logical units -0.007 0.015 -0.040 -0.469 0.640 0.832 1.202
Land use-cover 0.037 0.027 0.125 1.390 0.167 0.754 1.326
NDVI -0.120 0.596 -0.017 -0.201 0.841 0.900 1111
Plan curvature 0.152 0.093 0.137 1.640 0.104 0.866 1.154
Annual rain 0.007 0.001 0.421 4881  0.000 0.816 1.226
Table 4. Weights of layers using AHP.
<] = o 3 a 3 g _ p = S 2 — s
i=] L N o <l S c = = 8 = > =
g 2 8 g 2 = 3 = 8 8 8 h 2 S
L s ° © =3 < c S S § g S
= g s o iz .‘E 2 z <
= - 73 [a) [a) [a]
AHP 0223 0.169 0134 0107 0.083 0066 0055 0.047 0033 0030 0021 0017 0014
Landslide Occurrence Mapping (LOM) selected by default, which was

The sensitivity map for sliding and
each data set in the study area were
prepared using a continuous and
categorical data set with 10,000
background samples. Finally, the ME
model uses three sets of samples (i.e.,
R1, R2, R3) in the repetition phase. In
addition, the first replicate field was

v

performed in the present study in three
repetitions (1, 2 and 3). Landslide
occurrence mapping of the case study
using three groups of repetitions is
presented in Fig. 4. The predictive
results of landslide occurrence were
transformed into a raster format and
opened in ArcGIS. Then employing the
raster map, the landslide susceptibility
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map was isolated and visualized using
four categories based on Quantile
method, like number landslide "Low,
Moderate, High and Very high" (Fig. 5)
(Razandi et al., 2015; Naghibi and
Pourghasemi, 2015). On the other hand,

the percentage of risk areas of
landslides in all three groups of data
replication is shown in Table 5.

According to the table, the highest
percentage of landslide sensitivity class

sensitivity was observed in the high,
very high and low classes, respectively.
In addition, in the second and third
repetitions, the highest sensitivity of
landslides was in the moderate-
sensitivity class. According to the
landslide sensitivity scale, the highest
sensitivity occurred in high, very high
and low classes in the second iteration
and most landslides after the moderate
class, in high, low, and very high

area is located in the study area in the classes was observed in the third
moderate class (%26.14) with once iteration with a small percentage
repetition and wusing the maximum difference.
entropy model, and the highest landslide
g H0 GEpeD RGO cuGpor  GMp GMPO0 SEP0 5 o oo S0 SO0 00 GO0 GO0 S0 o
§- Landslide Occurrence Mapping (L OM), (The 1st rqﬂimhn)‘} -?T: g'LnndslideONurrenceanphlg(I.G.\l),('[he!st replication) _r.i
_ | Low 003) [ Eizh 0.10-024) \1-¢§~.|- N ) [ izt 0.13-030) “._bﬂl?‘ A
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Fig. 4. Landslide susceptibility map derived from the Maximum Entropy model.
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Table 5. Area percentage of models’ classes.

The first The second The third
Landslide hazard repetition Landslide hazard repetition Landslide repetition
classes Class area classes Class area hazard classes Class area
(%) (%) (%)
Low (<0.03) 24.20 Low (<0.04) 23.71 Low (<0.04) 24.75
Moderate Moderate Moderate
(0.03- 0.10) 26.14 (0.04- 0.13) 2591 (0.04- 0.10) 25.11
High High High
(0.10- 0.24) 25.00 (0.13- 0.30) 25.33 (0.10- 0.26) 24.91
Very high Very high Very high
(0.24- 0.98) 24.63 (0.30- 0.97) 25.03 (0.26- 0.98) 24.61
Totally 100 Totally 100 Totally 100

Maximum entropy performance

Landslide sensitivity event validation
should be used as a reference for the
performance of the algorithms used.
Accreditation was used to perform
sensitivity analysis for individual
algorithms and a combination of
algorithms in which different mapping
methods were tested (Remondo et al.,
2003; Chung and Fabbri, 2003). As
mentioned earlier, the Maxent model
was implemented using three sampling
strategies. According to the obtained

)4

results, the most accurate training data
among the three repetition groups, the
first repetition had the highest accuracy
(0.904) and the third and second
repetitions (0.898 and 0.892) had the
highest accuracy. On the other hand, the
highest accuracy in predicting the risk
of landslides using the maximum
entropy model and testing dataset,
among the three repetitions, the third,
second and first repetitions were the
most accurate (0.778, 0.770 and 0.640),
respectively.
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Fig. 5. The ROC curves of three groups of datasets for landslide.

Discussion

Spatial prediction of landslides is an
important issue in the science of
geomorphology and natural hazards.
Understanding the factors that cause
landslides is essential for effective risk
management (He et al, 2019).
Researchers believe that machine
learning techniques can solve many
real-world  problems compared to
conventional methods (Shahabi and
Hashim, 2015). Shirzadi et al. (2011)
showed that the clarity of the sample
method and size is appropriate for
understanding  the  accuracy  of
prediction in shallow slips. For this
reason, research on natural hazards has
been associated with the use of new

A

techniques and approaches such as
machine learning (Pourghasemi et al.,
2019), fuzzy ANP approaches (Alilo
et al., 2019), Dm-Chameleon clustering
algorithm (Hu et al., 2019), Google
Earth for mapping (Rabby and Li,
2019), traditional aerial photography
(Koca and Koca, 2019), and remote
sensing techniques (Zhao et al., 2018).
Prediction through modeling and
simulation is now considered one of the
important goals of natural resource
studies because it is often thought that
decision making by planners and
engineers is sufficient. For this reason,
this process must be performed
carefully and precisely (Pourghasemi
and Rahmati, 2018). Yilmaz (2010)
stated that the use of statistical models
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in the process of inputs, outputs and
spatial analysis is time consuming,
while  machine learning has the
advantage of automatically recognizing
the interaction of dependent and
independent  variables.  Therefore,
machine learning is relatively easy, and
predictive accuracy usually goes beyond
more common methods (e.g., analytic
hierarchical process, statistical methods)
if there is a complex interaction
(Tien Bui et al., 2012). Our results
complement the results of Felicisimo
et al. (2013), who used different models
of machine learning, including multiple
logistic regression. (MLR), MARS,
CART and Yousef et al. (2016), who
used RF, BRT, GLM and CART
techniques to assess landslide sensitivity
and then compared their performance.
In the present study, a machine learning
method, i.e., maximum entropy models,
has been performed to Landslide
Occurrence Mapping (LOM). Because
understanding the factors that cause
landslides is essential for effective risk
management (Hong et al., 2019), in this
study, 13 factors influencing landslide
risk have been used, including litho
logical units (Lu), land use cover
(LU-C), slope percentage (Sp), slope
aspect (Sa), altitude, plan curvature
(Plan-C), topographic wetness index
(TWI), distance to river (DTR), distance
to roads (DTgrs), distance to fault
(DTg), river density (RD), normalized
difference vegetation index (NDVI) and
annual rain (AR) in the north of Fars
Province. In general, strong linear
changes and correlations between
independent variables interfere with
statistical models to a lesser degree
(Chen et al., 2019). This test has two
factors: tolerance and variance inflation
factors (VIF). Therefore, appraising a
multi-collinearity study of the affecting
variables the occurrence of landslides
can be useful in the study area. This is
because it reduces the multicollinearity
between the independent variables and
reduces the model error. Therefore,

0

in our research, there is no
multicollinearity between the factors
and all the factors have been used for
modeling. For this reason, all layers
have TOL>0.1 and VIF<10. Affecting
factors landslides were identified by
various analyses in the identification of
mathematical maps using the integrated
AHP method and geological
technology. In the present study, the
AHP algorithm was used to evaluate the
importance of factors and to analyze
the contribution of the variables. In
addition, many researchers have used
many methods to invest and defect the
importance of factors influencing
landslides, such as the LVQ algorithm,
Gini and statistical sensitivity models to
calculate the weight of predictor
variables depending on the landslide
data set (Blahut et al., 2010; Guzzetti
et al., 2012). Factors affecting landslide
sensitivity were identified by various
analyses in the identification of
mathematical maps using the integrated
AHP method and geological technology
(Rajasekhar et al., 2019). Shows the
final weight of each of the effective
layers and compares them litho logical
units (Lu), land use-cover (LU-C), slope
percentage with numbers of 0.223,
0.169 and 0.134, respectively have the
most importance on the landslide risk in
the case study; on the other hand, the
lowest weight was obtained for annual
rain (0.014). The wvalue of the
consistency ratio (CR) is 0.05, which is
considered compatible and thus reduces
any mentality that CR differs in
different studies, such as the research of
Rajasekhar et al. (2018) They have a
consistency ratio of 0.08 which should
be CR<0.1. Pourghasemi and Rahmati
(2018) state overall, classified layers,
such as slope aspect and land use, have
relatively strong effects on landslides.
Although different machine learning
models have been used to map landslide
sensitivity, the accuracy of predicting
these methods is still debated (Tien Bui
et al.,, 2016). On the other hand, it has
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been well established that choosing the
best model among the various machine
learning techniques plays an important
role in assessing landslide sensitization
(Felicisimo et al., 2013). Although some
machine learning features the same
model accuracy, they are unique in their
individual approaches to modeling
landslide sensitivity and determining the
relationships between geological factors
and the onset of landslides (Goetz et al.,
2015). Understanding and being aware
of these important issues is essential for
applying a suitable model for a specific
purpose or for a specific study area
(Brenning, 2008). In the present study,
three groups of repetitions were used to
prepare a landslide risk map, where
most of the landslide risk had the
second repetition because the highest
risk of landslides occurred on the very
high-risk floor (25.03) and in two
repetitions in the three repetition groups
and many landslides occurred in the
central and northern regions of the case
study. Because landslide sensitivity is a
widespread natural hazard, data mining
methods can predict landslide-prone
areas. In the present study, this issue
is investigated by evaluating the
maximum entropy model. Pandy et al.
(2018) used the maximum entropy
model to evaluate the susceptibility to
landslides and reported that this model
has a good forecast of 0.78 AUC.
Arabamari et al. (2019) used six models
to predict the occurrence of landslides
and reported that collection models such
as SI-LDR, AHP-SI and AHP-LDR had
higher prediction values than the SI,
LDA and AHP models. In this study,
this maximum entropy method provides
quantitative results and allows us to
compare the results with those of other
studies around the world. The concept
of maximizing the entropy of
information theory (Banavar et al.,
2010; Ruddell et al, 2013). This
concept requires the creation of a
possible model prediction that uses the
minimum information obtained instead

\'2

of all available data (Phillips et al.,
2006). This information is useful for
predicting spatial patterns with the
highest precision. Effective variables
also show their interaction and the
observed ground drift distributions
show the location without the initial
statistical hypothesis. Recently,
Pourghasemi et al. (2017) evaluated
machine learning methods (ANN-ME,
ANN-SVM, SVM-ME) and individual
(MaxEnt, ANN, SVM) for qully
erosion. They illustrated that the
maximum entropy algorithm had the
lowest value in terms of agreement with
the algorithms. The accuracy of the
training data was the highest in the first
iteration (AUC=0.904) of the present
study and the Maximum entropy
accuracy in predicting landslide risk
was mapped with three repetitions.
Maxent is a machine-learning model
aimed only at public presence (Phillips
et al., 2006). The only feature of the
presence of the model can be considered
an advantage in remote and unbearable
areas (Pearson et al., 2007). This feature
is especially important for landslide
studies because even if there is
no phenomenon, the possibility of
landslides cannot be ruled out. In other
words, it is possible that an area without
landslides has a high potential for
occurrence, but morphological evidence
has not yet emerged spatially or cannot be
properly captured by the researcher.
Therefore, using the maximum entropy
model, as a method that depends on the
locations of presence in the landslide, can
eliminate many of these cases in terms of
efficiency. However, this feature allows
the model to be exposed to biased data
(Cao et al., 2016), where attendance data
are often recorded near accessible
locations (McCarthy et al., 2011).

Conclusions
Identified using a regional-scale

modern machine learning model is
necessary for accurate and precise
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monitoring and assessment of land
degradation, as well as for sustainable
land management in humid climates.
The Spatial distribution of landslides
was recorded and predicted in an
effective way. This is important for
achieving sustainable development on
earth by increasing the population and
land use, which will lead to sustainable
long-term development if impossible.
The present research can effectively
contribute to the UN goal of sustainable
development and the neutralization of
land degradation. Landslide sensitivity
mapping plays an important role in
providing a platform for decision
makers and officials, especially in
landslide-prone areas. The present study
was performed using the Maxent
machine learning model in the critical
region of northern Fars Province, Iran.
Hence, 13 controlling factors on
landslide sensitivity, namely (Lu),
(LU-C), (Sp), (Sa), altitude, (Plan-C),
(TWI)! (DTR)v (DTRS)’ (DTF)! (RD)’
(NDVI) and (AMR). There was no
multicollinearity among the effective
factors and the litho logical units (Lu),
land use cover (LU-C), and slope
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