بهره‌برداری بهینه از سیستم تک‌مخزنه‌ی سد دز با استفاده از الگوریتم جست‌و‌جوی ذرات باردار

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد/ سمنان

2 هیات علمی/ دانشگاه اصفهان

3 هیات علمی/ دانشگاه سمنان

چکیده

سابقه و هدف: امروزه، کمبود منابع آب از چالش‌های اساسی کشور ما ایران می‌باشد. بنابراین، ذخیره‌سازی و بهره‌برداری بهینه از منابع محدود موجود از جمله آب ذخیره شده در مخازن سدها از موضوعات مورد توجه محققین حوزه‌ی منابع آب می باشد.در این تحقیق،مسئله‌ی بهره‌برداری بهینه از سیستم تک‌مخزنه‌ی سد دز با استفاده از یکی از جدیدترین الگوریتم‌های فراکاوشی، به نام الگوریتم جست‌و‌جوی ذرات باردار، حل شده است. در حالت کلی، اساس این الگوریتم، قوانین الکترواستاتیک برآیند نیرو‌های ناشی از میدان الکتریکی ذرات باردار می‌باشد. برای اولین بار، کاوه و طلعت‌اهری در سال2010 این الگوریتم را معرفی و قابلیت‌های آن را در زمینه‌ی حل مسائل مهندسی و توابع نمونه، بررسی نمودند. نتایج حاصل نشان داد که الگوریتم مذکور کارآیی خوبی دارد. بنابراین استفاده از آن در حل مسائل بهینه‌سازی مهندسی توصیه می‌شود. ولیکن، بررسی سوابق تحقیقاتی نشان دهنده آن است که استفاده از این اگوریتم در حل مسائل حوزه مهندسی منابع آب بسیار محدود است.
مواد و روش‌ها: در این تحقیق دو مسئله‌ی بهره‌برداری بهینه‌ی ساده و برقابی سد دز، برای دوره‌های زمانی ۵و ۲۰ ساله با استفاده از الگوریتم پیشنهادی حل شده است. برای حل این مسائل دو فرمو‌ل‌بندی ارائه شده است، که در فرمول‌بندی اول مقدار آب رها شده از مخزن سد و در فرمول‌بندی دوم حجم ذخیره‌ی مخزن سد به ‌عنوان متغیر تصمیم انتخاب و نتایج حاصل از آن با سایر نتایج موجود مقایسه شده است.
یافته‌ها: مقایسه نتایج، نشان‌دهنده‌ی کارآیی خوب الگوریتم مذکور در حل این مسائل است که در آن جواب‌های فرمول‌بندی اول از دوم بهتر می‌باشد. به عبارت دیگر نتایج حاصل از فرمول بندی اول برای دوره‌های 5 و 20 ساله نسبت به نتایج فرمول بندی دوم به-ترتیب ۲۹/۱۱ و ۶۹/۱۶ درصد برای مسئله‌ی بهره‌برداری ساده و ۰۶/۲۰ و ۶۶/۳۷ درصد برای مسئله‌ی بهره‌برداری برقابی کاهش یافته است.همچنین، نتایج حاصل از این الگوریتم برای دوره‌های 5 و 20 ساله نسبت به نتایج الگوریتم هوش جمعی ذرات به‌ترتیب 6۴/33 و 97/74 درصد برای مسئله‌ی بهره‌برداری ساده و ۵۳/۶ و ۴۸/۴۱درصد برای مسئله‌ی بهره‌برداری برقابیکاهش یافته است. علاوه بر آن، نتایج حاصل از این الگوریتم برای دوره‌های 5 و 20 ساله نسبت به نتایج الگوریتم ژنتیک به‌ترتیب ۷۹/۷ و ۵۹/۳۵ درصد برای مسئله‌ی بهره‌برداری ساده و ۳۲/۱۱ و ۴۳/۶۷ درصد برای مسئله‌ی بهره‌برداری برقابی بهبود یافته است.
نتیجه‌گیری: بررسی این نتایج با نتایج بدست آمده از سایر الگوریتم های موجود نشان دهنده کارائی بهتر الگوریتم جستجوی ذرات در حل مساله بهره برداری بهینه از مخازن سدهاست. با توجه به نتایج مذکور، استفاده از این الگوریتم در حل سایر مسائل حوزه‌ی مهندسی آب توصیه می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Optimal operation of single-reservoir system of Dez dam using charged system search algorithm

نویسندگان [English]

  • Tanaz sadat Farahnakian 1
  • Ramtin Moeini 2
  • Sayed Farhad Mousavi 3
1 MSC student/semnan
2 University of Isfahan
3 Professor/semnan
چکیده [English]

Background and objectives: Nowadays, water scarcity is a major challenge for our country, Iran. Therefore, storage and optimal operation of limited resources, including water stored in dams' reservoirs, is one of the issues of interest for researchers in the field of water resources. In this paper,optimization of single-reservoir operation problem is solved by using one of the newest heuristic algorithms, named charged system search algorithm. Generally, this algorithm is based onthe electrostatics laws to determine the quantity of resultant force. At the first time, Kaveh and Talataheri (2010) proposed this algorithm and examined its capabilities for solving engineering problems and sample functions. The results showed that the algorithm has a good performance. Therefore, its use for solving engineering optimization problems is recommended. However, a review of literature shows that the use of this algorithm is very limited in the field of water resource engineering.
Materials and methods: In this paper, the simple and hydropower operation of Dez reservoir, over 5 and 20 yearly operation time period are solved using the proposed algorithm. In order to solve these problems, two different formulations are proposed considering water release or storage volume as decision variables of the problem in the first and second formulation, respectively, and the results are compared to other available methods.
Results:Comparison of the results shows the capability of the proposed algorithm, in which the results of first formulation are better than the second one’s. In other words, the results of first formulation for solving simple operation problem over 5 and 20 years are reduced 11.29% and 16.69% in comparison with the results of second formulation and also using first formulation for solving hydropower problem the results are improved 20.06% and 37.66%. Furthermore, the results of proposed algorithm for solving simple operation problem over 5 and 20 years are reduced 33.64% and 74.97% in comparison with the results of particle swarm optimization and also using proposed algorithm for solving hydropower problem the results are improved 6.53% and 41.48%. In addition, the results of proposed algorithm for solving simple operation problem over 5 and 20 years are reduced 7.79% and 35.59% in comparison with the results of genetic algorithm and also using proposed algorithm for solving hydropower problem the results are improved 11.32% and 67.43%.
Conclusion: Investigating these results with the results obtained using other existing algorithms indicates a better performance of charged system search algorithm for solving the reservoir operation optimization problem. According to these results, the use of this algorithm is recommended for solving other problems in the field of water engineering.

کلیدواژه‌ها [English]

  • Charged system search algorithm
  • Optimal operation
  • single-reservoir system
  • Dez reservoir
-1.Afshar, M.H. 2012. Large Scale Reservoir Operation by Constrained Particle Swarm
Optimization Algorithms. Hydro-environment Research. 6: 75-87.
2.Afshar, M.H., and Moeini, R. 2008. Partially and Fully Constrained Ant Algorithms for the
Optimal Solution of Large Scale Reservoir Operation Problems. Water Resources
Management. 22: 1835-1857.
3.Afshar, A., Bozorg Haddad, O., Marino, M.A., and Adams, B.J. 2007. Honey-bee mating
optimization (HBMO) algorithm for optimal reservoir operation. J. Franklin Ins. 344: 452-462.
4.Afshar, M.H., Rezaee Sangdehi, E., and Moeini, R. 2011. Optimal Reservoir Operation using
Deterministic Adaptive Refinement Mechanism for Ant Algorithm. J. Civil Engin. 23: 1. 65-84.
(In Persian)
5.Bashiri-Atrabi, H., Qaderi, K., Rheinheimer, D., and Sharifi, E. 2015. Application of
Harmony Search Algorithm to Reservoir Operation Optimization. Water Resources
Management. 29: 15. 5729-5748.
6.Bozorg Hadad, O., Afshar, A., and Marino, M.A. 2006. Honey-Bees Mating Optimization
(HBMO) Algorithm: A New Heuristic Approach for Water Resources Optimization. Water
Resources Management. 20: 661-680.
7.Chang, L., Chang, F.J., Wang, K.W., and Dai, S.Y. 2010. Constrained Genetic Algorithm for
Optimizing Multi-Use Reservoir Operation. J. Hydrol. 390: 66-74.
8.Choong, S.M., and El-Shafie, A. 2014. State-of-the-Art for Modelling Reservoir Inflows and
Management Optimization. Water Resources Management. 20: 1-16.
9.Ehteram, M., Karami, H., Mousavi, S.F., El-Shafie, A., and Amini, Z. 2017a. Optimizing dam
and reservoirs operation based model utilizing shark algorithm approach. Knowledge-Based
Systems. 122: 26-38.
10.Ehteram, M., Mousavi, S.F., Karami, H., Farzin, S., Emami, M., Binti Othman, F., Amini,
Z., Kisi, O., and El-Shafie, A. 2017b. Fast convergence optimization model for single and
multi-purposes reservoirs using hybrid algorithm. Advanced Engineering Informatics.
32: 287-298.
11.Esat, V., and Hall, M.J. 1994. Water resources system optimization using genetic algorithms.
Proc. 1st International Conference on Hydroinformatics. Balkema. Rotterdam. The Netherlands,
Pp: 225-231.
12.Hossain, M.S., and El-Shafie, A. 2014a. Evolutionary Techniques Versus Swarm
Intelligences: Application in Reservoir Release Optimization. Neural Computing and
Applications. 24: 1583-1594.
13.Hossain, M.S., and El-Shafie, A. 2014b. Performance Analysis of Artificial Bee Colony
(ABC) Algorithm in Optimizing Release Policy of Aswan High Dam. Neural Computing and
Applications. 24: 1199-1206.
14.Hosseini, S.S., Ghodousian, A., and Mansouri, M. 2013. Optimizing the size and shape of
two-dimensional w using the Charged System Search Algorithm. National Conference on
Mechanical Engineering of Iran. Shiraz University, Shiraz. (In Persian)
15.Hosseini-Moghari, M., and Banihabib, M.E. 2014. Optimizing Operation of Reservoir for
Agriculture Water Supply Using Firefly Algorithm. J. Water Soil Resour. Cons. 3: 17-31.
(In Persian)
16.Karami Mohamadi, R., and Kargar, H. 2013. Structural health monitoring and diagnosis of
steel bridge damage based on model information using the Charged System Search
Algorithm. Third International Conference on Acoustic and Vibration. Iran Acoustic and
Vibration Association. Khaje Nasir Tossi University of Technology, Tehran. (In Persian)
17.Kaveh, A., and Nasrollahi, A. 2014. Charged System Search and Particle Swarm
Optimization Hybridized for Optimal Design of Engineering Structures. Scientia Iranica A.
21: 295-305.
18.Kaveh, A., and Nikaeen, M. 2013. Optimum Design of Irregular Grillage Systems
Using CSS and ECSS Algorithms with Different Boundary Conditions. Inter. J. Civil Engin.
11: 3. 143-153.
19.Kaveh, A., and Shokohi, F. 2014. Cost Optimization of Castellated Beams Using Charged
System Search Algorithm. Iran. J. Sci. Technol. Trans. Civil Engin. 38: 100. 235-249.
20.Kaveh, A., and Talatahari, S. 2010a. A Novel Heuristic Optimization Method: Charged
System Search. Acta Mechanica. 213: 3-4. 267-289.
21.Kaveh, A., and Talatahari, S. 2010b. A Charged System Search with a Fly to Boundary Method
for Discrete Optimum Design of Truss Structures. Asian J. Civil Engin. 11: 3. 277-293.
22.Kaveh, A., and Talatahari, S. 2010c. Charged System Search for Optimum Grillage System
Design Using the LRFD-AISC Code. J. Cons. Steel Res. 66: 6. 767-771.
23.Kaveh, A., and Talatahari, S. 2011. An Enhanced Charged System Search for Configuration
Optimization Using the Concept of Fields of Forces. Structural and Multidisciplinary
Optimization. 43: 339-351.
24.Kaveh, A., and Zolghadr, A. 2011. Shape and Size Optimization of Truss Structures with
Frequency Constraints Using Enhanced Charged System Search Algorithm. Asian J. Civil
Engin. 12: 4. 487-509.
25.Moeini, R., and Afshar, M.H. 2009. Application of an Ant Colony Optimization Algorithm
for Optimal Operation of Reservoirs: A Comparative Study of Three Proposed Formulations.
Scientia Iranica. 16: 4. 273-285.
26.Moeini, R., and Afshar, M.H. 2013. Extension of the Constrained Ant Colony Optimization
Algorithm for the Optimal Operation of Multi-reservoir Systems. J. Hydroinf. 15: 155-173.
27.Moeini, R., and Babaei, M. 2017. Constrained Improved Particle Swarm Optimization
Algorithm for Optimal Operation of Large Scale Reservoir: Proposing Three Approaches.
Evolving Systems. 8: 4. 287-301.
28.Moeini, R., Soltani-Nezhad, M., and Daei, M. 2017. Constrained Gravitational Search
Algorithm for Large Scale Reservoir Operation Optimization Problem. Engineering
Applications of Artificial Intelligence. 62: 222-233.
29.Mohamadi, M., and Mashayekhi, M. 2013. Optimization of the topology of double
layer bedspace structure using Charged System Search Algorithm. National Conference
on Applied Civil Engineering and Recent Achievement. Saze Kavir Company, Karaj.
(In Persian)
30.Norozi, B., Barani, Gh.A., Fatahihalghi, M., and Dehghani, A.A. 2013. A Multi-reservoir
System Operation Optimization Using Multi-population Genetic Algorithm, Case Study
Golestan and Voshmgir Reservoirs. J. Water Soil Cons. 18: 4. 43-62. (In Persian)
31.Rani, D., and Moreira, M.M. 2010. Simulation-Optimization Modeling: A Survey and
Potential Application in Reservoir Systems Operation. Water Resources Management.
24: 1107-1138.
32.Reddy, M.J., and Kumar, D.N. 2006. Ant Colony Optimization for Multi-purpose Reservoir
Operation. Water Resources Management. 20: 879-889.
33.Rohami, H., and Javanmardi, R. 2013. Comparison of the performance of two algorithms of
the Charged System Search Algorithm and Genetic Algorithm for solving constrained
problems with continuous variables. First National Conference on Architecture, Restoration,
Urbanism and Sustainable Environment. Hegmatane Environment Evaluators Association,
Hamadan. (In Persian)
34.Saberi, M., and Kaveh, A. 2015. Damage Detection of Space Structures Using Charged
System Search Algorithm and Residual Force Method. Iran. J. Sci. Technol. Trans. Civil
Engin. 39: C2. 215-229.
35.Sayyafzadeh, M., Haghighi, M., Bolouri, K., and Arjomand, E. 2012. Reservoir
Characterisation Using Artificial Bee Colony Optimization. APPEA J. 52: 115-128.
36.Sheikholeslami, A., Kaveh, A., Tahershamsi, A., and Talatahari, S. 2014. Application of
Charged System Search Algorithm to Water Distribution Networks Optimization. Inter. J.
Optim. Civil Engin. 4: 1. 41-58.
37.Wang, K.W., Chang, L.C., and Chang, F.J. 2011. Multi-tier Interactive Genetic Algorithms
for the Optimization of Long-term Reservoir Operation. Advances in Water Resources.
34: 1343-1351.
38.Yasar, M. 2016. Optimization of Reservoir Operation Using Cuckoo Search Algorithm:
Example of Adiguzel Dam, Denizli, Turkey. Mathematical Problems in Engineering.
ID 1316038:1-7.
39.Zahedi, M.S., Hosseini, K.H., and Rahmani, A. 2011. Optimization of water supply network
using Charged System Search Algorithm. M.Sc. Thesis. Semnan University, Semnan.
(In Persian)
40.Zhang, J., Wu, Z., Cheng, C., and Zhang, S. 2011. Improved Particle Swarm Optimization
Algorithm for Multi-reservoir System Operation. Water Science and Engineering. 4: 1. 61-73.