شناسایی و تفکیک مناطق سیل خیز و بررسی تأثیر فعالیت های آبخیزداری بر دبی اوج سیلاب حوضه (مطالعه موردی: حوضه آبخیز بار نیشابور)

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 استادیار گروه مرتع و آبخیزداری، دانشکده منابع طبیعی و محیط زیست، دانشگاه بیرجند، بیرجند، ایران

2 کارشناسی ارشد علوم و مهندسی آبخیزداری، دانشکده منابع طبیعی و محیط زیست، دانشگاه بیرجند، بیرجند، ایران

3 دانشگاه تبریز- دانشکده مهندسی عمران-گروه مهندسی آب و سازه های هیدرولیکی

چکیده

سابقه و هدف: روند رو به افزایش سیل در سال های اخیر حاکی از آن است که اکثر مناطق کشور در معرض تهاجم سیلاب های دوره ای و مخرب قرار دارند که از این نظر بسیاری از شهرها، روستاها، تأسیسات صنعتی و کشاورزی و اماکن مسکونی نیز در معرض خطر سیل قرار گرفته اند. لذا شناسایی اصولی مناطق سیل خیز در داخل حوضه آبخیز از جمله اقدامات بسیار مهم در کنترل سیل و کاهش خسارات ناشی از آن محسوب می گردد. هدف اصلی از انجام تحقیق حاضر بررسی و شناسایی مناطق سیل خیز و تأثیر فعالیت های آبخیزداری بر میزان دبی اوج سیلاب در حوضه آبخیز رودخانه بار شهرستان نیشابور واقع در استان خراسان رضوی می باشد.
مواد و روش ها: بدین منظور حوضه مورد مطالعه به 20 زیرحوضه تقسیم گردید وخصوصیات فیزیکی کل حوضه و زیرحوضه ها با استفاده از سیستم اطلاعات جغرافیایی و در فرمت رقومی تعیین شد. سپس با بهره گیری از مدل هیدرولوژیکی HEC-HMS و به کمک روش تکرار حذف انفرادی زیرحوضه (Single Successive Sub-watershed Elimination) آبنمودهای سیل متناظر با بارش های طراحی برای هر یک از زیر حوضه ها محاسبه گردید. سپس با حذف متوالی زیرحوضه ها در هر بار اجراء مدل، دبی خروجی کل حوضه پس از روندیابی سیل در آبراهه های اصلی بدون زیرحوضه مورد نظر (با استفاده از روش موج سینماتیک) محاسبه گردید، بدین ترتیب میزان تأثیر هر یک از زیرحوضه ها در تولید سیل خروجی حاصل گردید. همچنین، سیل خیزی حوضه مطالعاتی در واحد سطح حوضه محاسبه گردید و شاخص سیل خیزی (f)، مبنای اولویت بندی حوضه قرار گرفت.
یافته ها: در فرآیند واسنجی مدل دو پارامتر شماره منحنی و ضریب مانینگ به عنوان مؤثرترین پارامترها بر دبی سیلاب حوضه آبخیز انتخاب گردیدند و ضریب ناش-ساتکلیف بالا در رخدادهای سیل نشان داد که واسنجی مدل در حوضه آبخیز بار به نحو مناسبی صورت پذیرفته است. نتایج شبیه سازی نشان داد که زیرحوضه B1 (در بخش شمالی حوضه) در دوره های بازگشت 50 و 100 ساله با تولید دبی اوج 38.9 و 44.1 مترمکعب بر ثانیه در محل خروجی زیرحوضه، بیشترین مقدار و زیرحوضه های B11، B13 و B19 (در بخش های غربی حوضه) با دبی اوج نزدیک به صفر کمترین مقدار دبی اوج را به خود اختصاص می دهند. همچنین، با توجه به شاخص (f) در رگبارهای طرح با دوره های بازگشت‌ 50 و 100 ساله زیرحوضه‌های B4 و B3 (در نیمه شمالی حوضه) اولین و دومین رتبه و زیرحوضه‌های B6، B11،B12 ، B13،B14 و B19 (در نیمه جنوبی حوضه و در بخش های شرقی و غربی حوضه) کمترین اولویت را کسب کرده اند. در زیرحوضه B1 با توجه به اینکه بیشترین سطح عملیات بیولوژیک اجراء گردیده است، بالاترین درصد کاهش دبی اوج به میزان 41.27 تا 44.73 درصد می باشد. از طرف دیگر، نتایج نشان داد که هرچه نسبت سطح عملیات بیولوژیک به مساحت زیرحوضه بیشتر باشد، نقش این پروژه ها در کاهش میزان دبی اوج نیز واضح تر خواهد بود. با توجه به بررسی صورت گرفته نقش فعالیت های سازه ای در کاهش دبی اوج سیلاب کمتر از فعالیت های بیولوژیک می باشد و افزایش تعداد سازه ها در طول مسیر رودخانه باعث کاهش میزان دبی اوج زیرحوضه نیز خواهد شد.
نتیجه گیری: با بررسی اثر فعالیت های بیولوژیک و احداث گابیون بر دبی اوج سیلاب های طرح، می توان گفت که نقش فعالیت های بیولوژیک در کاهش دبی اوج و حجم سیلاب به مراتب مؤثرتر از فعالیت های سازه ای (احداث گابیون) می باشد. بنابراین، عامل CN به عنوان یک عامل مؤثر و قابل کنترل بر سیل خروجی حوضه و کاهش دبی اوج می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Identification and separation of flooding source regions and investigating the impact of watershed management operations on the peak discharge (Case study: Bar watershed, Neyshabour, Iran)

نویسندگان [English]

  • Hadi Memarian Khalil Abad 1
  • Mohammad Yousefi 2
  • Amirhosein Aghakhani Afshar 3
1 Assistant Professor Department of Watershed Management, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran
2 MSc. Department of Rangeland and Watershed Management, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran
3 Department of Water Engineering and Hydraulic Structures- Civil Engineering College- Tabriz University
چکیده [English]

Background and Objectives: The increasing flooding trend in recent years suggests that most of the country's regions are vulnerable to invasions of periodic and destructive floods. In this aspect, many cities, villages, industrial and agricultural facilities and residential areas are prone to flood occurrence, as well. Therefore, the basic identification of flood process within the catchment area is one of the most important measures in flood control and the mitigation of damages. The main objective of this research is to investigate and identify the flood areas and the effect of watershed management on flood peak discharge in the outlet of the Bar watershed, Neyshabour, located in Razavi Khorasan province.
Material and Methods: For this purpose, the basin was divided into 20 subbasins and the physical properties of the whole basin and subbasins were determined using the geographical information system oodand in a digital format. Then, by using the HEC-HMS hydrologic model, the corresponding flow discharges were calculated for each subbasin. Then, by successively deleting subbasins at each model runtime, i.e. Single Successive Subwatershed Elimination method (SSSE), the whole basin water discharge was calculated after the flood routing in the main streams without the subbasin by using the kinematic wave routing approach, Thus the effect/share of each subbasin in the production of flood is identified. Also, the flood discharge of the basin was calculated in the basin area unit and the flood index (f) was the basis for the priority of the basin.
Results: In calibration process, two parameters of curve number and manning coefficient were selected as the most effective parameters on flood discharge. The high Nash-Sutcliffe coefficient in flood events showed that calibration of the model in the watershed basin was appropriately done. The results showed that the subbasin B1 (in the northern part of the watershed) in the return periods of 50 and 100 years had the hieghst peak discharge of 38.9 and 44.1 cubic meters per second at the outlet of the subbasin, and the subbasins B11, B13 and B19 (in the western parts of the watershed) showed the minimum peak discharge. Also, according to the index (f), in flood plains with return periods of 50 and 100 years, the subbasins B4 and B3 (in the northern half of the watershed) ranked first and second, respectively and the subbasins B6, B11, B12, B13, B14 and B19 (in the southern part of the watershed and in the eastern and western parts of the watershed) showed the lowest priority in terms of their participation in basin flood. In subbasin B1, the highest level of peak discharge has been observed in the highest level of biological operations, ranging from 41.27 to 44.73 percent. On the other hand, the results showed that the higher the proportion of the biological activity to the subbasin area, the more obvious the role of these projects in reducing peak discharge. According to the study, the role of structural activities in reducing the flood peak is lower than biological activities, and increasing the number of structures along the river route will reduce the peak peak area of the subbasin.
Conclusion: By investigating the effect of biological activities and the construction of gabion check dams on the flood discharges, it can be said that the role of biological activities in reducing peak flow and flood volume is much more effective than structural activities (construction of gabion). Therefore, the CN factor is an effective and controllable factor for flood discharge of the basin, on reducing peak flow.

کلیدواژه‌ها [English]

  • flood
  • HEC-HMS
  • Kinematic wave routing
  • Peak discharge
  • Watershed management practices
1.Adib, A., Salarijazi, M., and Najafpour, K. 2010. Evaluation of synthetic outlet runoff
assessment models. J. Appl. Sci. Environ. Manage. 14: 3. 13-18.
2.Azamirad, M., Soleimani, K., Habibnejad Roshan, M., and Memari, A. 2014. Assessing the
impact of biological and mechanical projects on flood peak attenuation and runoff harvesting
in the Hec-Hms 3.1.0 and Arcmap 9.3 software environment. Tenth National Conference on
Watershed Management Sciences and Engineering (Adaptive Watershed Management),
Birjand, Iran. 11p. (In Persian)
3.Bahrami, A., Onagh, M., and Farazjoo, H. 2011. The role of flood routing in determining and
prioritizing hydrologic units of Bostan dam basin from flooding and management aspects. J.
Water Soil Resour. Cons. 1: 1. 11-27. (In Persian)
4.Choudhari, K., Panigrahi, B., and Paul, J.C. 2014. Simulation of rainfall-runoff process using
HEC-HMS model for Balijore Nala watershed, Odisha, India. Int. J. Geom. Geosci.
5: 2. 253-265.
5.Chow, V.T., Maidment, D.R., and Mays, L.W. 1988. Unit Hydrograph. Applied Hydrology.
McGraw-Hill International editions, Singapore, Pp: 201-241.
6.Ewen, J., and Parkin, G. 1996. Validation of catchment models for predicting land-use and
climate change impacts. 1. Method. J. Hydrol. 175: 583-594.
7.Feldman, A.D. 2000. Hydrologic modeling system HEC-HMS: technical reference manual.
US Army Corps of Engineers. Hydrologic Engineering Center, 148p.
8.Geza, M., Poeter, E.P., and McCray, J.E. 2009. Quantifying predictive uncertainty for a
mountain-watershed model. J. Hydrol. 376: 1. 170-181.
9.Karimian, R., Honarbakhsh, A., Sadatinejad, S.J., and Abdollahi, K. 2012. Flood Routing in
Rivers Using Kinematic Wave and Muskingum-Cunge Models (Case Study: Doab Samsami
River). Iran. Water Res. J. 6: 10. 57-65. (In Persian)
10.Khorasan Water and Soil Engineering Services Company. 2006. Watershed Studies of
Phases 1 and 2 of Neishabour Basin. Department of Natural Resources and Watershed of
Khorasan Razavi, Iran. 200p. (In Persian)
11.Khosroshahi, M. 2016. An overview to identification and prioritization of flood prone areas
using SSSE method in sub-watersheds (Case study: shamsabad basin). Iran. J. Water.
Manage. Sci. Engin. 10: 33. 59-73. (In Persian)
12.Kreft, S., Eckstein, D., Junghans, L., Kerestan, C., and Hagen, U. 2014. Global climate risk
index 2015: who suffers most from extreme weather events? Weather-related loss events in
2013 and 1994 to 2013. Germanwatch e.v, Bonn, Germany, 32p.
13.Mahdavi, M. 2005. Applied hydrology. Tehran University Press, 437p. (In Persian)
14.Matkan, A., Shakiba, A., Pourali, H., and Azari, H. 2009. Flood early warning with
integration of hydrologic and hydraulic models, RS and GIS (Case study: Madarsoo basin,
Iran). World Appl. Sci. J. 6: 12. 1698-1704.
15.McCuen, R.H. 1982. A guide to hydrologic analysis using SCS methods. Prentice-Hall, Inc.
USA, 145p.
16.Memarian, H., Balasundram, S.K., Talib, J., Teh Boon Sung, C., Sood, A.M., Abbaspour,
K.C., and Haghizadeh, A. 2012. Hydrologic Analysis of a Tropical Watershed using
KINEROS2. J. Environ. Asia. 5: 1. 84-93.
17.Miller, S.N., Kepner, W.G., Mehaffey, M.H., Hernandez, M., Miller, R.C., Goodrich, D.C.,
and Miller, W.P. 2002. Integrating landscape assessment and hydrologic modeling for land
cover change analysis. J. Am. Wat. Res. 38: 4. 915-929.
18.Ministry of Energy. 2016. Investigation of Flood Damage. The domestic publication of the
plan for the preparation of criteria and criteria for the country's water industry. Technical
Report No. 164-N, Iran. 111p. (In Persian)
19.Nash, J.E., and Sutcliffe, J.V. 1970. River flow forecasting through conceptual models part
I-A discussion of principles. J. Hydrol. 10: 3. 282-290.
20.Negaresh, H., Tavousi, T., and Mehdinasab, M. 2011. Investigating the intensity of flooding
in the Kashkan River basin. J. Manage. Syst. 13: 4. 49-58.
21.Saghafian, B., and Farazjoo, H. 2007. Prioritization of Hydrologic Units with Respect to
Flood Potential in Golestan Dam River Basin. Iran. J. Water. Manage. Sci. Engin. 1: 1. 1-11.
(In Persian)
22.Saghafian, B., Golian, S., Elami, M., and Akhtari, R. 2013. Monte Carlo analysis of the
effect of spatial distribution of storms on prioritization of flood source areas. J. Nat. hazards.
66: 2. 1059-1071.
23.Sangjun Im, S., Park, S., and Jang, T. 2007. Application of SCS curve number method for
irrigated paddy field. KSCE. J. Civ. Eng. 11: 1. 51-56.
24.Scharffenberg, W.A., and Fleming, M.J. 2006. Hydrologic Modeling System HEC-HMS:
User's Manual: US Army Corps of Engineers. Hydrologic Engineering Center. 318p.
25.Shabanlou, S., and Rajabi, A. 2012. Sub-basins participation rate in flood intensity rise basin
using GIS. J. Environ. Res. Develop. 7: 1A. 475-483.
26.Shokoohi, A.R. 2007. Assessment of urban basin flood control measures using HYDROGIS
tools. J. Appl. Sci. 7: 13. 1726-1733.
27.Singh, V.P. 2001. Kinematic wave modelling in water resources: a historical perspective.
Hydrol. Process. J. 15: 4. 671-706.
28.Soleimani Sarood, F., Soltani Kopaii, S., and Salajeghe, A. 2013. Selection of appropriate
flooding potential index by using rainfall-runoff (HEC-HMS) model and RS & GIS
techniques in jiroft dam basin. J. Water. Manage. Res. 4: 8. 90-105. (In Persian)
29.Taghvaie Abrishami, A.A., Eslami, A., and Talvari, A. 2008. Determination of Rainfall
Temporal Pattern in khorasan Province. Soil Conservation and Watershed Management
Institute. Tehran, Iran. 81p. (In Persian)
30.Taheri Tizro, A., Pakdel Khasmakhi, H., Marofi, S., and Vazifedoust, M. 2016. Integrated
HEC-HMS and GLDAS models to runoff estimate of ungauged area. J. Water Soil Cons.
23: 4. 101-118. (In Persian)
31.USACE. 2000. Hydrologic Modelling System HEC-HMS, Technical reference manual.
United States Army Corps of Engineers, Davis, California. 148p.
32.USDA-SCS. 1986. US Department of Agriculture-soil Conservation Service (USDASCS):
Urban Hydrology for Small Watersheds. USDA, Washington, DC. USA. 117p.
33.Yazdi, J., Salehi Neyshabouri, S.A.A., Niksokhan, M.H., Sheshangosht, S., and Elmi, M.
2013. Optimal prioritisation of watershed management measures for flood risk mitigation on
a watershed scale. J. Flood Risk Manage. 6: 4. 372-384.
34.Yusop, Z., Chan, C.H., and Katimon, A. 2007. Runoff characteristics and application of
HEC-HMS for modelling stormflow hydrograph in an oil palm catchment. J. Wat. Sci. Tech.
56: 8. 41-48.
35.Zehtabian, G., Ghodosi, J., Ahmadi, H., and Khalilizadeh, M. 2009. Investigating the Priority
of Flood Potential in Sub-basins and Determining Flood Generation Areas (Case study:
Marmeh watershed basin in Fars Province). J. Manage. Syst. 2: 6. 1-13.
36.Zhan, X., and Huang, M.L. 2004. ArcCN-Runoff: an ArcGIS tool for generating curve
number and runoff maps. J. Environ Modell Softw. 19: 10. 875-879