تصمیم‌گیری تخصیص آب در شرایط عدم‌قطعیت با استفاده از بهینه‌سازی چندهدفه همتای استوار

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای مهندسی منابع آب، دانشگاه بوعلی سینا

2 عضو هیئت علمی/ دانشگاه بو علی سینا

چکیده

سابقه و هدف: نظر به وجود عدم قطعیت‌ در داده‌های مرتبط با مسائل منابع آبی، ضرورت طراحی سیستم بهینه منابع آب که از اطمینان‌پذیری بالایی در شرایط وقوع عدم قطعیت برخوردار باشد، بیش از پیش احساس می‌گردد. ماهیت چندبعدی مسائل تخصیص بهینه آب نیز منجر شده که لحاظ نمودن اهداف متضاد چندگانه درون مدل‌های بهینه‌سازی اجتناب ناپذیر ‌باشد. هدف از این تحقیق ارائه یک مدل بهینه‌سازی کمّی-کیفی است که ضمن برقراری تعادل میان اهداف اقتصادی و زیست‌محیطی، در برابر عدم‌قطعیت‌های موجود، استوار باقی بماند.
مواد و روش‌ها: با کمک اهداف بیشینه نمودن درآمد کل سیستم و کمینه نمودن بار آلودگی ورودی به رودخانه، مدل قطعی تحقیق ساخته شده و در مطالعه موردی سیستم رودخانه‌ای دز-کارون به کار گرفته شد. با مد نظر قراردادن عدم قطعیت جریان رودخانه و نیازهای آبی و به کارگیری رویکرد بهینه‌سازی استوار برتسیماس و سیم، مدل قطعی به یک مدل بهینه‌سازی چندهدفه استوار ارتقاء یافت. حساسیت مدل استوار نسبت به تغییرات سطوح عدم‌قطعیت و نیز احتمال تخطی قید مختلف مورد بررسی قرار گرفت. حل مسئله از طریق روش اپسیلون محدودیت انجام شد و ارزیابی مدل استوار از طریق مقایسه نتایج آن با مدل قطعی صورت پذیرفت. نقطه زانوی جبهه پارتو به عنوان جواب انتخابی از میان مجموعه جواب‌های بهینه، مورد استفاده قرار گرفت.
یافته‌ها: نتایج حاصل از به‌کارگیری روش توسعه یافته در تخصیص بهینه منابع آب مطالعه موردی این تحقیق مبیّن کارایی و توانایی آن در حل سریع و دقیق مسئله بود. مقایسه جواب بهینه نقاط زانو نشان داد که مقاوم‌سازی مدل بهینه‌سازی در برابر عدم‌قطعیت‌ها به صورت لحاظ نمودن سطح عدم‌قطعیت و احتمال تخطی قیود 1/0 به منظور جلوگیری از شکست در تأمین آب، ملزم به کاهش بهره‌برداری از آب رودخانه از 5/8301 به 9/7368 میلیون متر مکعب در سال و تعدیل درآمد اقتصادی حاصل سیستم از 1،636،808 به 1،365،693 میلیون ریال در سال در مقایسه با مدل قطعی می‌باشد. این شرایط موجب بهبود وضعیت بارآلودگی تولیدی از 53،949 به 48،505 تن در سال خواهد شد. نتایج نشان داد که رویکرد استوار مورد استفاده در این مطالعه قادر است بدون افزودن پیچیدگی به مدل قطعی، امکان ایمن‌سازی شده نتایج حاصل در برابر عدم قطعیت‌ها را فراهم آورد و تصمیم‌گیر می‌تواند با تعیین سطح عدم قطعیت و مقدار احتمال تخطی قید، درجه استواری مدل تخصیص منابع آب را انتخاب نموده و امکان سازش میان مقادیر اهداف و سطح اطمینان‌پذیری سیستم را فراهم آورد.
نتیجه‌گیری کلی: نتایج حاکی از رضایت‌بخش بودن، قابلیت اطمینان بالا و انعطاف پذیری مدل استوار پیشنهادی این تحقیق می‌باشد. بر این اساس مدل خطی ارائه شده در این مطالعه ضمن کاربری ساده، می‌تواند به عنوان یک ابزار تصمیم‌گیری کآرا جهت تخصیص بهینه منابع آب مورد استفاده قرار گیرد.

کلیدواژه‌ها

عنوان مقاله [English]

Water allocation decision making in the presence of uncertainty using robust counterpart programming and multiple objectives

نویسندگان [English]

  • Omid Nasiri-Gheidari 1
  • Safar Marofi 2

1 Ph.D. candidate in water resource engineering, Bu-Ali Sina University

2 Faculty member/ Bu-ali Sina University

چکیده [English]

Background and Objectives: Considering the existence of uncertainty in the data of water resource problems, it has become more essential to design a reliable water resource allocation model under uncertainty. Due to multi-dimensional nature of optimal water allocation problem, considering multiple conflicting objectives within the optimization models is inevitable. The aim of this study is to provide a quantity-quality optimization model in which not only balance the economic and environmental objectives, but also remain robust in the face of existing uncertainties.
Materials and Methods: The nominal model of the study was constructed using the objectives of maximizing the income of the entire system and minimizing pollution load entered to the river. It was applied to the Dez-Karoon river system as a case study. By taking the uncertainties of river flow and water demands into account, the nominal model was promoted to a robust multi-objective optimization model using the Bertsimas and Sim's approach. The sensitivity of the robust model to changes in uncertainty levels and the probability of constraint violation was investigated. The ɛ-constraint method was used to solve the problem and the nominal model was applied to assess the results of the developed model. Among optimal solutions set, Knee point of the Pareto front of was selected as the solution of the problem.
Results: Application of developed model into the case study demonstrates its ability in quickly finding the exact solution of the problem. Comparing the optimal solution of knee points showed that hedging the optimization model against uncertainties via considering the uncertainty level and violation probability of 0.1, requires the decrease in operating the river water from 8301.5 to 7368.9 MCM/year and adjustment of the economic income from 1,636,808 to 1,365,693 million Rial/year in comparison with the nominal model. Under such a condition in which prevents the failure of supplying water under a given level of risk, the pollution load discharged into the river will decrease from 53,949 to 48,505 ton/ year. The results illustrate that without adding extra complexity into the nominal model, it can be immunized against uncertainties via the robust approach. By determining the uncertainty level and the probability of constraint violation, the decision maker is able to select the robustness level of the water resource allocation model and therefore, explore tradeoff among the values of the objectives and reliability of the system.
Conclution: The results demonstrate the satisfactory, high reliability and flexibility of the proposed robust model. Accordingly, the provided linear model of this study may be used as a user-friendly tool in the decision making process for optimal allocation of water resources.

کلیدواژه‌ها [English]

  • ɛ-Constraint method
  • Knee point
  • Robust counterpart
  • Water allocation
  • Uncertainty
 1.Anghileri, D., Castelletti, A., Pianosi, F., Soncini-Sessa, R., and Weber, E. 2012. Optimizing
watershed management by coordinated operation of storing facilities. J. Water Resour. Plan.
Manage. 139: 5. 492-500.
2.Ardjmand, E., Weckman, G.R., Young, W.A., Sanei Bajgiran, O., and Aminipour, B. 2016. A
robust optimisation model for production planning and pricing under demand uncertainty.
Inter. J. Prod. Res. 54: 13. 1-21.
3.Babel, M., Gupta, A.D., and Nayak, D. 2005. A model for optimal allocation of water to
competing demands. Water Resources Management. 19: 6. 693-712.
4.Ben-Tal, A., and Nemirovski, A. 1999. Robust solutions of uncertain linear programs.
Operations Research Letters. 25: 1. 1-13.
5.Ben-Tal, A., and Nemirovski, A. 2000. Robust solutions of linear programming problems
contaminated with uncertain data. Mathematical Programming. 88: 3. 411-424.
6.Bertsimas, D., and Sim, M. 2004. The price of robustness. Operations Research. 52: 1. 35-53.
7.Cai, X., Lasdon, L., and Michelsen, A.M. 2004. Group decision making in water resources
planning using multiple objective analysis. J. Water Resour. Plan. Manage. 130: 1. 4-14.
8.Chung, G., Lansey, K., and Bayraksan, G. 2009. Reliable water supply system design under
uncertainty. Environmental Modelling & Software. 24: 4. 449-462.
9.Das, I. 1999. On characterizing the “knee” of the Pareto curve based on normal-boundary
intersection. Structural Optimization. 18: 2. 107-115.
10.Deb, K. 2003. Multi-objective evolutionary algorithms: Introducing bias among Paretooptimal solutions. P 263-292, In: A. Ghosh and S. Tsutsu (eds), Advances in evolutionary
computing, Springer, Berlin.
11.Deb, K., and Gupta, S. 2011. Understanding knee points in bicriteria problems and their
implications as preferred solution principles. Engineering Optimization. 43: 11. 1175-1204.
12.El Ghaoui, L., and Lebret, H. 1997. Robust solutions to least-squares problems with
uncertain data. SIAM Journal on Matrix Analysis and Applications. 18: 4. 1035-1064.
13.El Ghaoui, L., Oustry, F., and Lebret, H. 1998. Robust solutions to uncertain semidefinite
programs. SIAM Journal on Optimization 9: 1. 33-52.
14.Haimes, Y.Y. 1971. On a bicriterion formulation of the problems of integrated system
identification and system optimization. IEEE Transactions on Systems, Man and
Cybernetics. 1: 3. 296-297.
15.Homayounifar, M., and Rastegaripour, F. 2010. Water allocation of Latian dam between
agricultural products under uncertainty. J. Agric. Econ. Dev. 24: 2. 259-267. (In Persian)
16.Housh, M., Ostfeld, A., and Shamir, U. 2011. Optimal multiyear management of a water
supply system under uncertainty: Robust counterpart approach. Water Resources Research.
47: 10. 1-15.
17.Li, M., and Guo, P. 2014. A multi-objective optimal allocation model for irrigation water
resources under multiple uncertainties. Applied Mathematical Modelling. 38: 19. 4897-4911.
18.Li, Y., Huang, G.H., Huang, Y., and Zhou, H. 2009. A multistage fuzzy-stochastic
programming model for supporting sustainable water-resources allocation and management.
Environmental Modelling & Software. 24: 7. 786-797.
19.Li, Z., and Ierapetritou, M.G. 2008. Robust optimization for process scheduling under
uncertainty. Industrial & Engineering Chemistry Research. 47: 12. 4148-4157.
20.Maqsood, I., Huang, G.H., and Yeomans, J.S. 2005. An interval-parameter fuzzy two-stage
stochastic program for water resources management under uncertainty. Europ. J. Oper. Res.
167: 1. 208-225.
21.Miettinen, K. 1999. Nonlinear multiobjective optimization. volume 12, International Series
in Operations Research and Management Science, Kluwer Academic Publishers, Dordrecht,
Netherlands. 120p.
22.Mohaghar, A., Mehregan, M.R., and Naz-Abadi, M.R. 2009. Applying robust optimization
to solve product mix problem in automotive industries. J. Ind. Manage. 1: 2. 139-152.
(In Persian)
23.Mulvey, J.M., Vanderbei, R.J., and Zenios, S.A. 1995. Robust optimization of large-scale
systems. Operations Research 43: 2. 264-281.
24.Sabouhi, M., and Mardani, M. 2013. Optimal allocation strategies of irrigation water and
coastal land of Nekooabad irrigation network under uncertainty. 7: 13. 109-119. (In Persian)
25.Sadeghi, H., and Khaksar Astaneh, S. 2014. Provide an optimum model for renewable
energy development in Iran; robust optimization approach. Iranian Energy Economics.
3: 11. 159-195. (In Persian)
26.Sakhaii, M., Tavakkoli-Moghaddam, R., Bagheri, M., and Vatani, B. 2016. A robust
optimization approach for an integrated dynamic cellular manufacturing system and production
planning with unreliable machines. Applied Mathematical Modelling, 40: 1. 169-191.
27.Soyster, A.L. 1973. Convex programming with set-inclusive constraints and applications to
inexact linear programming. Operations Research. 21: 5. 1154-1157.