ارزیابی روش‌های تهیه منحنی IDF با رابطه‌ مبتنی بر ماهیت فرکتالی بارش

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه سیستان و بلوچستان

2 کارشناس ارشد گروه مهندسی عمران دانشگاه سیستان و بلوچستان

چکیده

سابقه و هدف: روابط شدت- مدت- فراوانی بارش (IDF) یکی از مهم‌ترین ملزومات مورد نیاز در زمینه‌ برنامه‌ریزی، طراحی و عملکرد سازه‌های هیدرولیکی و پروژ‌ه‌های مختلف منابع آب می‌باشد. عمدتاً استخراج منحنی‌های IDF مستلزم تجزیه و تحلیل‌ آماری داده‌های بارش در تداوم‌های مختلف می‌باشد و بنابراین هنگامی‌که حوضه‌ مورد مطالعه فاقد آمار و یا دارای آماری محدود باشد؛ بررسی مشکل می‌گردد. این در حالی است که در اغلب حوضه‌ها دسترسی به آمار بارش روزانه به سهولت امکان‌پذیر است. بنابراین هدف از مطالعه حاضر، ارزیابی و مقایسه‌ منحنی‌هایIDF مستخرج از رابطه‌ تلفیق تئوری فرکتال و توزیع مقادیر حدی تعمیم‌یافته برای مناطق فاقد آمار براساس مفهوم خواص فرکتال بارش با روابط متداول تجربی و تعیین میزان خطا و دقت محاسبات و قابلیت اطمینان این رابطه نسبت به روابط دیگر می‌باشد.
مواد و روش‌ها: در این تحقیق با استفاده از داده‌های حداکثر عمق بارش سالانه با تداوم روزانه، ساخت منحنی‌های IDF با روش مبتنی بر رویکرد تلفیق ماهیت فرکتالی داده‌های بارش و توزیع مقادیر حدی تعمیم‌یافته صورت گرفت. سپس منحنی‌های IDF از رابطه‌ تجربی قهرمان و روش متداول که براساس تحلیل آماری داده‌های بارش حدی سالانه در تداوم‌های مختلف می‌باشد؛ برای ایستگاه مورد مطالعه استخراج گردید. در نهایت ارزیابی و مقایسه‌ کمّی و کیفی نتایج حاصل از روش تئوری فرکتال با رابطه تجربی قهرمان انجام شد. این پژوهش برای ایستگاه باران‌سنجی چناران واقع در عرض جغرافیایی 36 درجه و 38 دقیقه و 38 ثانیه و طول جغرافیایی 59 درجه و 7 دقیقه و 1/53 ثانیه، به کارگرفته شد.
یافته‌ها: بررسی رفتار فرکتالی داده‌های بارش در ایستگاه باران‌سنجی چناران نشان داد؛ خواص بارش در بازه زمانی 1 تا 7 روز از فرضیه تک‌مقیاسی (مونوفرکتالی) تبعیت می‌کند و رگبار طرح برآورد شده با تئوری فرکتال با داده‌های مشاهداتی بارش انطباق خوبی دارد. نتایج در ایستگاه باران‌سنجی چناران نشان از برتری دقت رابطه تلفیق تئوری فرکتال و توزیع مقادیر حدی تعمیم‌یافته با متوسط خطای 34/9 نسبت به رابطه تجربی قهرمان با متوسط خطای 43/16 دارد. علاوه بر این خطای برآورد مقادیر IDF با رابطه تئوری فرکتال نسبت به روش متداول که مبتنی بر داده‌های واقعی بارش می‌باشد؛ در تداوم 24 ساعته، صفر محاسبه گردید. بنابراین از آن‌جا که ساخت منحنی‌های IDF با رابطه تلفیق تئوری فرکتال و توزیع مقادیر حدی تعمیم‌یافته تنها با استفاده از داده‌های حداکثر شدت بارش 24ساعته انجام می‌گیرد؛ می‌توان نتیجه گرفت؛ روش مذکور از دقت مناسب و نتایج قابل قبولی برخوردار است.
نتیجه‌گیری: تحقیق حاضر تلاشی است در راستای افزایش کاربرد روابط مقیاسی IDF نسبت به استفاده از روابط تجربی مدون که بدون توجه به شرایط جغرافیایی و هیدرولوژیکی محل صورت می‌گیرد؛ برای استفاده در مناطقی که با کمبود یا نبود آمار بارش مواجه است. از ویژگی‌های حائز اهمیت این رابطه، پایه‌گذاری آن براساس خواص فرکتالی مقادیر بارش می‌باشد و در مقابل، تهیه‌ منحنی IDF در دو روش تجربی و متداول تنها منوط به تجزیه و تحلیل‌های آماری و ریاضی بدون توجه به اصول فیزیکی فرآیند بارش صورت می‌گیرد و در نتیجه افزایش عدم اطمینان نتایج را به دنبال خواهد داشت.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of IDF curve production methods by relationship based on nature of combination of fractal of precipitation

نویسندگان [English]

  • Mehdi Azhdary Moghaddam 1
  • Zahra Heravi 2

1 University of Sistan and Baluchestan

2 Civil Engineering Department, University of Sistan and Baluchestan

چکیده [English]

Background and Objectives: The rainfall Intensity–Duration–Frequency (IDF) relationships are among the most important requirements in the field of planning, design and operation of hydraulic structures and water resources different projects. Mainly the creation of IDF curves requires statistical analysis of precipitation data at different durations and so when the study basin is no data or has limited statistics, the survey is difficult. However, in most basins, availability to daily precipitation data is easily possible. Therefore, aim of present study is an evaluation and comparison of IDF curves derived from the integrating fractal theory and generalized extreme value distribution relationship for ungaged site on the basis concept of fractal properties of precipitation with the empirically common relationships and determination of the error rate and calculation accuracy and reliability of this relationship into other relationships.
Materials and Methods: In this research, by using of data of maximum depth of annual rainfall at daily duration, construction of IDF curves with the method based on the approach of an integrated of fractal nature of rainfall data and generalized extreme value distribution was done. Then, IDF curves was created by applying Ghahraman method of the empirical relationship was given for this method and at the conventional method of statistical analysis of extreme annual rainfall data at different durations for study station. Ultimately, evaluation and quantitative and qualitative comparison of results of fractal theory method with Ghahraman empirical relationship was done. This research was applied for the Chenaran rain gauge station at latitude 〖36〗^° 〖 38〗^' 〖 38〗^" and longitude 〖59〗^° 〖07〗^' 〖53.1〗^".
Results: Investigation of Fractal behavior in precipitation data at the Chenaran rain gauge station showed precipitation properties at time range from 1 to 7 days, follows from the simple scaling hypothesis (Monofractal) and the estimated design storm by fractal theory has a good agreement with the precipitation observed data. The results at Chenaran rain gauge station shows the accuracy superiority of an integrated of fractal theory and generalized extreme value distribution relationship with an error average 9.34 than the Ghahraman empirical relationship with an error average 16.43. In addition, estimation error of quantities IDF by the fractal theory relationship to the conventional method that is based on the real data at 24 hours duration was calculated zero. So far as the construction of IDF curves by an integrated of fractal theory and generalized extreme value distribution relationship, only is done by using the 24-hour maximum rainfall intensity data; it can be concluded; the mentioned method has the suitable accuracy and acceptable results.
Conclusion: The present research is an attempt to increase the use of IDF scaling relationship than to using of compiled empirical relationships that conducted without regard to geographical and hydrological conditions; for using in regions that are faced with deficiency or the lack of rainfall data. The important characteristics of this relationship is the foundation of it based on the fractal properties of rainfall and in contrast, prepared of IDF curves in both experimental and conventional method is only depends on the statistical and mathematical analysis without attention to physical principles of precipitation process, and thus will follow increase the uncertainty of the results.

کلیدواژه‌ها [English]

  • IDF curve
  • Daily rainfall data
  • Fractal nature of precipitation
  • Generalized extreme value distribution
  • Ghahraman empirical relationship
- 1.Agbazo, M., 'Gobi, G.K., Kounouhewa, B., Alamou, E., and Afouda, A. 2016. Estimation of
IDF Curves of Extreme Rainfall by Simple Scaling in Northern Oueme Valley, Benin
Republic (West Africa). Earth Sci. Res. J. 20: 1. 1-7.
2.Alizadeh, A. 2010. Principles of Applied Hydrology. Emam Reza Univ. Press, 912p.
(In Persian)
3.Bara, M., Gaal, S., Szolgay, J., and Hlavcova, K. 2009. Estimation of IDF curves of extreme
rainfall by simple scaling in Slovakia. Contributions to Geophysics and Geodesy. 39: 3. 187-206.
4.Bougadis, J., and Adamowski, K. 2006. Scaling model of a rainfall intensityduration
frequency relationship. Hydrological Processes. 20: 17. 3747-3757.
5.Corral, Á. 2015. Scaling in the timing of extreme events. Chaos, Solitons & Fractals,
74: 99-120.
6.Ghahraman, B., and Abkhezr, H. 2004. Improvement in Intensity-Duration-Frequency
Relationships of Rainfall in Iran. Science and Technology of Agriculture and Natural
Resources. 8: 2. 1-14. (In Persian)
7.Hosking, J.R.M., and Wallis, J.R. 1993. Some statistical useful in regional frequency analysis.
Water Resources Research. 29: 2. 271-281.
8.Malamud, B.D., and Turcotte, D.L. 2006. The applicability of power law frequency statistics
of flood. J. Hydrol. 322: 1. 168-180.
9.Nguyen, V.T.V., Nguyen, T.D., and Wang, H. 1998. Regional estimation of short duration
rainfall extremes. Water science and technology. 37: 11. 15-19.
10.NouriGheidari, M.H. 2012. Determine of Design Maximum Intensity of Precipitation by
Combined Fractal Theory and Generalized Extreme Value Distribution. J. Irrig. Sci. Engin.
35: 2. 83-90.
11.Yu, P.S., Yang, T.C., and Lin, C.S. 2004. Regional rainfall intensity formulas based on
scaling property of rainfall. J. Hydrol. 295: 1. 108-123.