نقشه‌برداری رقومی فرسایش‌پذیری خاک (مطالعه موردی: دهگلان، استان کردستان)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد

2 استادیار گروه علوم و مهندسی خاک، دانشگاه کردستان

3 استادیار و عضو هیأت علمی دانشگاه اردکان

4 هیات علمی

چکیده

سابقه و هدف: فرسایش‌پذیری خاک یکی از خصوصیات بسیار مهم خاک می‌باشد که بررسی تغییرات مکانی آن، جهت مدیریت زراعی، تخریب اراضی و مطالعات زیست محیطی حائز اهمیت می‌باشد. بنابراین اطلاع از تغییر‌پذیری مکانی فرسایش‌پذیری خاک نقش مهمی در مدل‌سازی فرسایش آبی دارد. بررسی تغییرات فرسایش‌پذیری خاک به شیوه‌های مرسوم گران و زمان‌بر است . لذا یکی از راه‌های حل این چالش استفاده از نقشه‌برداری رقومی خاک است که می‌تواند خصوصیات خاک را با استفاده از داده‌های کمکی و مدل‌های داده‌کاوی به صورت رقومی پیش‌بینی کند. هدف از این تحقیق استفاده از مدل‌های شبکه عصبی مصنوعی و جنگل تصادفی و داده‌های کمکی برای تهیه نقشه فرسایش‌پذیری خاک می‌باشد.
مواد و روش: با استفاده از روش نمونه‌برداری تصادفی طبقه‌بندی، تعداد 100 نمونه خاک از عمق 30-0 سانتی‌متری خاک‌های منطقه دهگلان استان کردستان (با وسعت 48701 هکتار) برداشت شده و خصوصیت بافت خاک، شن ریز، کربن آلی، نفوذپذیری، ساختمان خاک و فرسایش‌پذیری خاک (با استفاده از معادله ویشمایر و اسمیت) اندازه‌گیری و محاسبه شد. متغیرهای محیطی در این پژوهش اجزاء سرزمین و داده‌های تصویر +ETM بودند. پارامترهای سرزمین ( شامل 15 پارامتر) و شاخص رس و شاخص گیاهی نرمال شده (NDVI) به ترتیب با استفاده از نرم‌افزار SAGA و ArcGIS10.3 محاسبه و استخراج گردید. جهت ارتباط بین فرسایش‌پذیری خاک و متغیرهای کمکی از مدل‌های جنگل تصادفی و شبکه عصبی مصنوعی بهره گرفته شد و با استفاده از روش اعتبارسنجی دوجانبه مورد ارزیابی قرار گرفت. در نهایت نقشه شوری خاک با استفاده از مدل بهتر تهیه شد.
یافته‌ها: برای پیش‌بینی فرسایش‌پذیری خاک، متغیرهای کمکی شامل شاخص خیسی، شاخص همواری دره، شیب، شاخص رس، شاخص NDVI و باند 7 مهم‌ترین بودند. نتایج این تحقیق نشان داد که دو مدل (شبکه عصبی مصنوعی با 80/0، 003/0 و 021/ و جنگل تصادفی با 76/0، 005/0 و 024/ به ترتیب0برای ضریب تبیین، میانگین خطا و میانگین ریشه مربعات خطا) دارای دقت نزدیک به‌هم برای پیش‌بینی فرسایش‌پذیری خاک بودند. فرسایش‌پذیری خاک در محدوه بین 05/0 -0 تن ساعت بر مگا ژول میلی‌متر قرار داشت و بیش‌ترین مقادیر فرسایش‌پذیری خاک در مناطق مرتفع جنوبی با شیب زیاد و پوشش گیاهی کم مشاهده شد. در کلاس شیب بیشتر از 10 درصد فرسایش‌پذیری خاک بیشتر از سایر کلاس‌های شیب بود. همچنین کلاس شیب بیشتر از 10 درصد، دارای کمترین مقادیر داده‌های کمکی شامل شاخص خیسی، شاخص همواری دره با درجه تفکیک بالا، شاخص رس و باند7 و بیشترین مقدار شاخص NDVI بود.
نتیجه گیری: در پژوهش حاضر از مدل‌های شبکه عصبی مصنوعی و جنگل تصادفی جهت بررسی تغییرات مکانی فرسایش‌پذیری خاک در منطقه دهگلان استان کردستان استفاده شد. میزان فرسایش‌پذیری خاک در کلاس شیب >10% در مقایسه با سایر کلاس‌های شیب بیشتر بود. شاخص NDVI مهمترین متغیر کمکی در پیش بینی فرسایش‌پذیری خاک در منطقه بود. همچنین شبکه عصبی مصنوعی و جنگل تصادفی بر اساس نتایج شاخص‌های آماری شامل ضریب تبیین، میانگین خطا و میانگین ریشه مربعات خطا ( به ترتیب 80/0، 003/0 و 021/ برای شبکه عصبی مصنوعی و 76/0، 005/0 و 024 برای جنگل تصادفی) برآورد دقیقی از فرسایش‌پذیری خاک داشتند. پیشنهاد می‌گردد جهت نقشه‌برداری رقومی خصوصیات خاک و به روز کردن نقشه‌های قدیمی از تکنیک‌های پدومتری (همچون مدل شبکه عصبی مصنوعی و جنگل تصادفی) و داده‌های کمکی اجزاء سرزمین و تصاویر ماهواره‌ای استفاده شود. همچنین پیشنهاد می‌گردد که فرسایش‌پذیری خاک مستقیماً اندازه گیری شده و نتایج آن با این مطالعه مقایسه گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Digital mapping of soil erodibility (Case study: Dehgolan, Kurdistan Province)

نویسنده [English]

  • kamal nabiollahi 2
2 kurdistan university
چکیده [English]

Background and Objectives: Soil erodibility is one of the most important soil properties which investigation of its spatial variability is essential to crop management, land degradation and environmental studies. Therefore, information about spatial variability of soil erodibility has important role to modeling of water erosion. Investigation of variability of soil erodibility using traditional methods is expensive and time consuming. Therefore, one of the ways to solve this challenge is using digital soil mapping that digitally can predict soil characteristics using auxiliary data and data mining models. The aim of this research is using artificial neural network (ANN) and random forest (RF) models and auxiliary data to make soil erodibility map.
Materials and Methods: Using stratified random soil sampling method 100 soil samples in depths 0-30 cm of Dehgolan soils, Kurdistan Province (covers 48710 ha) were taken and soil texture, fin sand, infiltration, soil structure and soil erodibility (using Wischmeier and Smith equation) were measured and computed. Auxiliary data in this study were terrain attributes and Landsat ETM+ data. Terrain parameters (include 15 parameters) and clay index (SI) and normalized difference vegetative index (NDVI) were computed and extracted using SAGA and ArcGIS10.3 software, respectively. To make a relationship between soil erodibility and auxiliary data, RF and ANN models were applied and were validated using cross validation method. Finally, soil salinity map were made using better model.
Results: To prediction of soil erodibility, auxiliary variables include wetness index, Multi-resolution Valley Bottom Flatness (MrVBF), slope, clay index, NDVI index and B7 were the most important. The results of the study showed that two models (0.80, 0.003 and 0.021 for ANN and 0.76, 0.005 and 0.024 RF for determination of coefficient, mean error, and root mean square root, respectively) were closely matched to predict soil erodibility. Soil erodibility content ranged between 0 to 0.05 t h MJ-1mm-1 and the highest its contents were observed in southern high regions with high slope and low vegetation. In slope class > 10 % soil erodibility was higher than other slope classes. Slope class > 10 % also had the lowest contents of auxiliary data including Wetness index, MrVBF, clay index and band 7 and the highest content of NDVI index .
Conclusion: In this research to investigate spatial variability of soil erodibility ANN and RF models was used in Dehgolan region, Kurdistan province. Soil erodibility content was higher in slope class > 10 % compared to other slope classes. NDVI index was the most important auxiliary data to predict soil erodibility of the study area. ANN and RF also based on the results of statistics indices including determination of coefficient, mean error, and root mean square root (0.80, 0.003 and 0.021 for ANN and 0.76, 0.005 and 0.024 for RF) had accurate estimation of soil erodibility. It is suggested using pedometric techniques such as ANN model and auxiliary data of terrain attributes and satellite images to digital mapping of soil properties and updating old maps. It is suggested also direct measurement of soil erodibility and its result will be compared to this study.

کلیدواژه‌ها [English]

  • Land use
  • Satellite image
  • Digital elevation model
  • Aartificial neural network
1.Bonilla, C.A., and Johnson, O.I. 2012. Soil erodibility mapping and its correlation with soil
properties in Central Chile. Geoderma. 189: 116-123.
2.Brus, D.J., Kempen, B., and Heuvlink, G.B.M. 2011. Sampling for validation of digital soil
maps. Eur. J. Soil Sci. 62: 394-407.
3.Dai, P.F., Qigang, Z., Zhiqiang, L.V., Xuemei, W., and Gangcai, W.L. 2014. Spatial
prediction of soil organic matter content integrating artificial neural network and ordinary
kriging in Tibetan Plateau. Ecol. Ind. 45: 184-194.
4.Gallant, J.C., and Dowling, T.I. 2003. A multiresolution index of valley bottom flatness for
mapping depositional areas. Water Resour. Res. 39: 12. 1347-1360.
5.Gee, G.W., and Bauder, J.W. 1986. Particle size analysis. P 383-411, In: A. Klute (Ed.),
Methods of Soil Analysis. Part 1. American Society of Agronomy. Madison, WI.
6.Hengel, T., Rossiter, D.G., and Stein, A. 2003. Soil sampling strategies for spatial prediction
by correlation with auxiliary maps. Geoderma. 120: 75-93.
7.Heung, B., Bulmer, C.E., and Schmidt, M.G. 2014. Predictive soil parent material mapping at
a regional-scale: a random forest approach. Geoderma. 214-215: 141-154.
8.Jafari, A., Khademi, H., Finke, P., Wauw, J.V.D., and Ayoubi, S. 2014. Spatial prediction of
soil great groups by boosted regression trees using a limited point dataset in an arid region,
southeastern Iran. Geoderma. 232-234: 148-163.
9.Kang, S., Zhang, L., Song, X., Zhang, S., Liu, X., Liang, Y., and Zheng, S. 2001. Runoff and
sediment loss responses to rainfall and land use in two agricultural catchments on the Loess
Plateau of China. Hydrol. Process. 15: 977-988.
10.Lado, M., Paz, A., and Ben-Hur, M. 2004. Organic matter and aggregate size interactions in
infiltration, seal formation, and soil loss. Soil Sci. Soc. Am J. 68: 3. 935-942.
11.Malone, B.P., McBratney, A.B., Minasny, B., and Laslett, G.M. 2009. Mapping continuous
depth functions of soil carbon storage and available water capacity. Geoderma. 154: 138-152.
12.Marcel, G.S., Feike, J.L., Martinus, T., and van Genuchten, H. 1998. Neural Network
Analysis for Hierarchical Prediction of Soil Hydraulic Properties. Soil Sci. Soc. Am. J.
62: 847-855.
13.Marchetti, A., Piccini, C., Francaviglia, R., and Mabit, L. 2012. Spatial Distribution of Soil
Organic Matter Using Geostatistics: A Key Indicator to Assess Soil Degradation Status in
Central Italy. Pedosphere. 22: 2. 230-242.
14.McBratney, A.B., Santos, M.L.M., and Minasny, B. 2003. On digital soil mapping.
Geoderma. 117: 3-52.
15.McIntosh, P., and Laffan, M. 2005. Soil erodibility and erosion hazard: Extending these
cornerstone soil conservation concepts to headwater streams in the forestry estate in
Tasmania. For. Ecol. Manage. 220: 1. 128-139.
16.Minasny, B., and McBratney, A. 2002. The method for fitting neural network parametric
pedotransfer functions. Soil Sci. Soc. Am. J. 66: 2. 352-361.
17.Nabiollhi, K., Haidari, A., and Taghizadeh-Mehrjardi, M. 2014. Digital mapping of soil
texture using regression tree and ann in Bijar, Kurdistan. J. Water Soil. 28: 5. 1025-1036.
(In Persian)
18.Nelson, D.W., and Sommers, L.E. 1982. Total carbon, organic carbon, and organic matter.
P 539-594, In: A.L. Page and D.R. Keeney (Eds.), Methods of Soil Analysis, Part 2-
Chemical and Microbiological Properties. ASA-SSSA, Madison, WI.
19.Nosrati, H., and Eftekhari, M. 2014. A new approach for variable selection using fuzzy logic.
Comput. Intell. Electron. Syst. 4: 71-83. (In Persian)
20.Pahlavan-Rad, M.R., Toomanian, N., Khormali, F., Brungard, C.W., Komaki, C.B., and
Bogaert, P. 2014. Updating soil survey maps using random forest and conditioned Latin
hypercube sampling in the loess derived soils of northern Iran. Geoderma. 232-234: 97-106.
21.Panagos, P., Meusburger, K., Ballabio, C., Borrelli, P., and Alewell, C. 2014. Soil erodibility
in Europe: A high-resolution dataset based on LUCAS. Sci. Total Environ. 479: 189-200.
22.Parvizi, Y., Manochehr, G., Mahmoud, O., Mahdian, M.H., and Amini, M. 2010.
Determination of Soil Organic Carbon Variability of Rainfed Crop Land in Semi-arid
Region (Neural Network Approach). Mod Appl Sci. 4: 7. 25-33.
23.Shirazi, M.A., and Boersma, L. 1984. A unifying quantitative analysis of soil texture. Soil
Sci. Soc. Am. J. 48: 142-147.
24.Somaratne, S., Seneviratne, G., and Coomaraswamy, U. 2005. Prediction of Soil Organic
Carbon across Different Land-use Patterns: A Neural Network Approach. Soil Sci. Soc. Am.
J. 69: 1580-1589.
25.Taghizadeh-Mehrjardi, R., Nabiollahi, K., Minasny, B., and Triantafilis, J. 2015. Comparing
data mining classifiers to predict spatial distribution of USDA-family soil groups in Baneh
region, Iran. Geoderma. 253-254: 67-77.
26.Taghizadeh-Mehrjardi R., Nabiollahi K., and Kerry, R. 2016. Digital mapping of soil organic
carbon at multiple depths using different data mining techniques in Baneh region, Iran.
Geoderma. 253-254: 67-77.
27.Taghizadeh-Mehrjardi, R. 2016. Modern concepts in Soil Science (Pedometric). Ardakan
Univ. Press, 311p. (In Persian)
28.Taghizadeh-Mehrjardi, R., Minasny, B., Sarmadian, F., and Malone, B.P. 2014. Digital
mapping of soil salinity in Ardakan region, central Iran. Geoderma. 213: 15-28.
29.Vasques, G.M., Dematte, J.A.M., Viscarra Rossel, R.A., Ramirez-Lopez, L., and Terra, F.S.
2014. Soil classification using visible/near-infrared diffuse reflectance spectra frommultiple
depths. Geoderma. 223-225: 73-78.
30.Wischmeier, W.H., and Smith, D.D. 1978. Predicting rainfall erosion losses: a guide to
conservation planning. Agric. No. 282. US of Agriculture, Washington, DC.
31.Yu, D.S., Xue-Zheng, S., and Weindorf, D.C. 2006. Relationships between permeability
and erodibility of cultivated acrisols and cambisols in subtropical China. Pedosphere.
16: 3. 304-311.