مدل‌سازی تصادفی بار رسوب با استفاده از جنگل تصادفی و رگرسیون چندک

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 هیات علمی

2 دانشگاه گنبد

3 استادیار- دانشگاه گنبد

4 دانشجوی کارشناسی ارشد دانشگاه گنبد کاووس

چکیده

سابقه و هدف: ارزیابی بار معلق رسوبی رودخانه‌ها بسیار مهم است. کیفیت آب رودخانه‌ها و محیط‌زیست تحت تأثیر بار رسوب می‌باشد. همچنین طراحی سازه‌های هیدرولیکی و سایر تأسیسات آبرسانی، مدیریت حوزه آبخیز و اجرای برنامه‌های حفاظت خاک و مشکلات عمده‌ی دیگر ناشی از آورد رسوب رودخانه‌ها به تخمین صحیح بار رسوب وابسته است. از آنجایی که برآورد مستقیم بار رسوبی بسیار دشوار و وقت‌گیر است، لذا این امر سبب شد محققان به برآورد غیرمستقیم بار رسوبی که به روش‌های گوناگون امکان‌پذیر است روی آورند. یکی از راه‌های آسان برآورد غیرمستقیم بار رسوبی، منحنی سنجه رسوب است. این روش تنها می‌تواند معرف یک مقدار رسوب در یک دبی معین باشد و به علت عوامل مختلفی در طبیعت ممکن است چندین مقدار بار رسوبی برای یک دبی مشخص وجود داشته باشد. بر این اساس در پژوهش حاضر از روش‌های رگرسیون چندک و جنگل تصادفی که بتوانند مقدار بار رسوب را برای یک مقدار دبی معین در احتمالات مختلف تخمین بزنند استفاده شد. با به کار گیری این دو روش می‌توان احتمال وقوع بار رسوب در رویدادهای استثایی و سیلاب‌های عظیم را تحلیل کرد.
مواد و روش‌ها: در این پژوهش از مدل‌های منحنی سنجه رسوب، رگرسیون چندک و جنگل تصادفی به منظور برآورد بار رسوب چهار ایستگاه‌ جنگلده، نوده، ارازکوسه و قزاقلی واقع در رودخانه‌ی گرگانرود در استان گلستان استفاده گردید. به این منظور داده‌های دبی- رسوب متناظر چهار ایستگاه مورد مطالعه به دو بخش 75% برای آموزش‌ و 25% برای آزمون تفکیک شدند. در روش منحنی سنجه، مقدار رسوب با استفاده از معادله‌ی توانی برازش داده شده بین دبی و رسوب متناظر، حاصل گردید. الگوریتم‌های رگرسیون چندک و جنگل تصادفی با استفاده از نرم‌افزار آماری R اجرا گردیدند. مقدار بهینه پارامترهای متغیر این دو روش با استفاده از آزمون و خطا تعیین شد. با اجرای مدل، مقدار رسوب مربوط به یک دبی در سطوح احتمال مختلف (1% تا 99%) محاسبه شد.
یافته‌ها: با به کارگیری این دو روش، بار رسوبی در چندک‌های 5/2، 50 و 5/97% تعیین و دامنه عدم قطعیت در هر ایستگاه مشخص شد. روش جنگل تصادفی در ایستگاه‌های جنگلده و نوده با مقدار RMSE به ترتیب برابر 96 و 210 تن بر روز و رگرسیون چندک در ایستگاه‌های ارازکوسه و قزاقلی با مقدار RMSE به ترتیب 6453 و 24886 تن بر روز به عنوان بهترین روش برآورد بار رسوبی انتخاب شدند. مقدار معیار ارزیابی RMSE رسوب برآورد شده توسط منحنی سنجه رسوب کلاسیک در ایستگاه‌های جنگلده، نوده، ارازکوسه و قزاقلی به ترتیب برابر 199، 288، 7505 و 25811 تن بر روز به دست آمد.
نتیجه‌گیری: نتایج نشان داد منحنی سنجه رسوب کلاسیک علاوه بر اینکه قادر به برآورد بار رسوبی در دامنه‌ی عدم قطعیت‌های مختلف برای یک مقدار دبی معین نیست، بار رسوبی را نیز با مقدار خطای بیشتری برآورد می‌کند. با استفاده از روش‌های رگرسیون چندک و جنگل تصادفی برای یک دبی معین مقدار رسوب در احتمالات مختلف قابل پیش‌بینی است و این امر کمک زیادی به برنامه‌ریزی صحیح و جامع برای ساخت سازه‌های آبی می‌کند و از این طریق، خطرات تخریب این تأسیسات را که ناشی از سیلاب‌های عظیم می‌باشد کاهش می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Stochastic modeling of sediment yield using random forest and quantile regression

نویسندگان [English]

  • Seyed Morteza Seyedian 1
  • Hamed Rohani 2
  • Abolhasan Fathabadi 3
  • Mahsa Javadi Alinezhad 4
چکیده [English]

Background and objectives: Assessment of suspended sediment load is very important. Water quality and environmental is under impression of sediment load. As well as the design of hydraulic structures and other water supply facilities, watershed management, soil conservation programs and another major problem caused by sediment yield is dependent on the accurate estimation of sediment load. As a direct estimation of sediment load is very difficult and time consuming, so this led the researchers to estimate sediment load as indirect that it is possible to resort to various methods. One easy way to indirectly estimate the sediment load is sediment rating curve. It can only represent invariable amount of sediment in flow and due to various factors in nature may be there is several sediment load for a known flow rate. On the basis of this study quantile regression and random forest methods was used that can estimate sediment load for a given flow rate in the various probability. The use of these two methods can be analyzed sediment load in great flood and special events.
Materials and methods: In this study, sediment rating curve models, quantile regression and random forest was used to estimate sediment load in four stations Gorganrood River Jangaldeh, Nodeh, Arazkoose and Ghazaghli in Golestan province. For this purpose, flow and sediment data was collected at four studied stations and separated into two parts, 75% for training and 25% for testing. The rating curve was obtained using fitted power equation between discharge and sediment load. Quantile regression and random forest algorithms were implemented using R statistical software. The optimal values of the variable parameters of the two methods were determined using trial and error method. By running the model, the amounts of sediment associated with specified flow were calculated in different probability level (1% to 99%).
Results: Using these two methods, sediment load was estimated in quantiles 2.5, 50 and 97.5%, respectively and range of uncertainty was determined in each station. In Jangaldeh and Nodeh stations random forest were selected as best method with RMSE criterion 96 and 210 tons per day and quantile regression were selected as best method with RMSE criterion 6453 and 24886 tons per day in Arazkoose and Ghazaghli stations. Classic rating curve method estimate sediment load in Jangaldeh, Nodeh, Arazkoose and Ghazaghli stations with RMSE 199, 288, 7505 and 25811 tons per day respectively.
Conclusion: The results showed that classic sediment rating curve not only unable to estimate the sediment load in the range of uncertainties in specified flow rate but also estimates sediment load with more error. Quantile regression and random forest methods can be estimate sediment load in various probabilities for a specified flow and this has contributed greatly to accurate and comprehensive planning for the construction of hydraulic structures and in this way, the dangers of the destruction of the facility reduction due to the great flood.

کلیدواژه‌ها [English]

  • Sediment rating curve
  • Quantile Regression
  • Random Forest
  • Gorganrood River
 1.Abbasi, F. 2013. Principles of Flow in Surface Irrigation. Iranian National Committee on
Irrigation and Drainage (IRNCID), Tehran, 232p. (In Persian)
2.Bautista, E., and Wallender, W.W. 1985. Spatial variability of infiltration in furrows.
Transactions of the American Society of Agricultural Engineers. 28: 6. 1846-1851.
3.Cai, H., Xu, J., Wang, J., Chen, X., Zhu, D., and Xie, F. 2016. Yearly variation of soil
infiltration parameters in irrigated field based on WinSRFR4.1. Transactions of the Chinese
Society of Agricultural Engineering. 32: 2. 92-98.
4.Childs, J.L., Wallender, W.W., and Hopmans, J.W. 1993. Spatial and seasonal variation of
furrow infiltration. J. Irrig. Drain. Engin. 119: 1. 74-90.
5.Elliot, R.L., and Walker, W.R. 1982. Field evaluation of furrow infiltration and advance
functions. Transactions of the American Society of Agricultural Engineers. 25: 2. 396-400.
6.Emdad, M.R. 2009. Determination of seasonal variation of infiltration and its effects on
irrigation management in forage maize. 10th National Seminar on Irrigation and
Evapotranspiration, Shahid Bahonar University of Kerman, Kerman, Iran. (In Persian)
7.Fonteh, M.F., and Podmore, T. 1994. Application of geostatistics to characterize spatial
variability of infiltration in furrow irrigation. Agricultural Water Management. 25: 2. 153-165.
8.Gates, T.K., and Clyma, W. 1984. Designing furrow irrigation systems for improved seasonal
performance. Transactions of the American Society of Agricultural Engineers. 27: 6. 1817-1824.
9.Hillel, D. 1998. Environmental Soil Physics: Fundamentals, applications and environmental
considerations. Academic Press. San Diego, CA.
10.Holzapfel, E.A., Jara, J., Zuñiga, C., Mariño, M.A., Paredes, J., and Billib, M. 2004.
Infiltration parameters for furrow irrigation. Agricultural Water Management. 68: 1. 19-32.
11.Karmeli, D., Salazar, L.J., and Walker, W.R. 1978. Assessing the spatial variability of
irrigation water applications. Environmental Protection Technology Series EPA (USA). no.
600/2-78-041.
12.Linderman, C.L., and Stegman, E.C. 1971. Seasonal variation of hydraulic parameters and
their influence upon surface irrigation application efficiency. Transactions of the American
Society of Agricultural Engineers. 14: 5. 914-918.
13.Nahvinia, M.J., Liaghat, A., and Parsinejad, M. 2010. Prediction of depth of infiltration in
furrow irrigation using tentative and statistical models. J. Water Soil. 24: 4. 769-780.
(In Persian)
14.Rezaeepour, S., Ghobadi Nia, M., and Tabatabaei, S.H. 2012. Evaluation of the input
parameters variations on the infiltration coefficients in surface irrigation system. P 1-12. 3rd
National Conference on Comprehensive Water Resources Management, 10-11 Sep. 2012.
Sari Agricultural Sciences and Natural Resources University, Sari, Iran. (In Persian)
15.Shafique, M.S., and Skogerboe, G.V. 1983. Impact of seasonal infiltration function variation
on furrow irrigation performance. P 292-301. Proceedings of National Conference on
Advances in Infiltration, Transactions of the ASAE, St. Joseph, MI, USA.
16.Sharma, M.L., Gander, G.A., and Hunt, C.G. 1980. Spatial variability of infiltration in a
watershed. J. Hydrol. 45: 1. 101-122.
17.Starr, J.L. 1990. Spatial and temporal variation of ponded infiltration. Soil Sci. Soc. Amer. J.
54: 3. 629-636.
18.Tabatabaei, S.H., Fardad, H., Neyshabory, M.R., and Liaghat, A. 2006. Simulation model for
seasonal variation of Kostiakov-Louise infiltration equation in two different farm
managements in cracking soil. J. Water Soil Sci. (Science and Technology of Agriculture
and Natural Resources). 10: 1. 55-69. (in Persian)
19.Taleby Kalan, Y., Mohammadi, M.H., and Karimi, S. 2016. The effect of land use on water
infiltration characteristics in some soils of Ardabil and Zanjan province. J. Soil Manage.
Sust. Prod. 6: 1. 109-126. (In Persian)
20.Uloma, A.R., Samuel, A.C., and Kingsley, I.K. 2014. Estimation of Kostiakov’s infiltration
model parameters of some sandy loam soils of Ikwuano-Umuahia, Nigeria. Open
Transactions on Geosciences. 1: 1. 34-38.
21.Valiantzas, J.D., Aggelides, S., and Sassalou, A. 2001. Furrow infiltration estimation from
time to a single advance point. Agricultural Water Management. 52: 1. 17-32.
22.Ziaii, G., Abbasi, F., Babazadeh, H., and Kaveh, F. 2016. Evaluation of temporal variation
of soil water infiltration coefficients in furrow irrigation. Iran. J. Soil Water Res. (IJSWR).
47: 2. 229-236. (In Persian)