ارزیابی مولفه های هیدرولوژیکی حوضه با کمک مدل مفهومی پیوسته بارش- رواناب شماره منحنی اصلاح شده

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجو

2 عض هیئت علمی

3 عضو هیئت علمی

4 مدیر گروه

چکیده

سابقه و هدف: مدل های شبیه سازی هیدرولوژیکی پیوسته و روزانه یکی از بهترین ابزارهای برآورد رواناب حاصل از بارندگی می باشند. این مدل ها با شبیه سازی فرایند تبدیل بارش به رواناب قادر به تخمین میزان رواناب حوضه های آب ریز فاقد ایستگاه اندازه گیری با کمترین زمان و هزینه ممکن می باشند. هدف این مقاله معرفی یک روش مدلسازی پیوسته، مفهومی و روزانه بارش-رواناب بر مبنای روش شماره منحنی تغییر یافته است که با استفاده از آن بتوان علاوه بر رواناب خروجی حوضه ، غالب یا مغلوب بودن فرآیند های هیدرولوژیکی مدل را نیز مشخص کرد.
مواد و روش ها: درتحقیق حاضر مدل بارش-رواناب بر اساس مدل شماره منحنی اصلاح شده ،به صورت یکپارچه، مفهومی و در مقیاس روزانه در محیط برنامه نویسی متلب کدنویسی شد و با استفاده ازالگوریتم بهینه سازیPSO و تابع هدف ناش-ساتکلیف (NSE) واسنجی گردید. واسنجی مدل توسط الگور یتم PSO (کدنویسی شده در زبان برنامه نویسی متلب) و با تکرار نه هزار مرتبه اجرای مدل، انجام شد. بدین ترتیب که ، ابتدا متغیرهای تصمیم (پارامترهای مدل )در محدوده مشخص شده به صورت تصادفی مقداردهی اولیه شده و سپس الگوریتم PSOاجرا اشده و سری پارامتر بهینه محاسبه گردید. ضمن آنکه در مرحله شبیه سازی مدل ذکر شده با استفاده از داده های ایستگاه معرف جهانی برای حوضه لیف واقع در شمال شهرکالینز در ایالت می سی سی پی آمریکا و همچنین یکی از زیرحوضه های کرخه در داخل کشور واسنجی و صحت سنجی شده است.
یافته ها : مقایسه مقادیر رواناب مشاهده شده و شبیه سازی شده در حوضه لیف با کمک آماره های ریشه میانگین مربعات خطا (RMSE) ، ضریب ناش-ساتکلیف (NSE) و معیار کلینگ گوپتا (KGE) به ترتیب در دوره ی واسنجی 4/1 ، 81/0و 87/0 و در دوره ی صحت سنجی 53/2، 83/0 و 86/0 نشان از عملکرد مناسب و قابل قبول مدل داشت. نتایج معیارهای مذکور در زیر حوضه قره سو نیز قابل قبول برآورد گردید ولی به دلیل کیفیت بالاتر داده های حوضه لیف نتایج آن نسبتاً بهتر ارزیابی می گردد. نتایج مدل حاضر با خروجی های مشابه از مدل مفهومی بارش– رواناب روزانه Hymod (و با حیث ورودی های یکسان) مقایسه گردید. به طور کلی برتری نسبی مدل Hymod در مقایسه نتایج در هر دو حوضه به چشم می خورد که دلیل آن را شاید بتوان در عدم قطعیت کمتر ناشی از تعداد کمتر پارامترها و روابط ساده تر مدل Hymod جستجو کرد. ضمن آنکه مدل ارائه شده مبتنی بر شماره منحنی علی رغم دارا بودن معیارهای کمتر از مدل hymod به دلیل محاسبه مولفه های مختلف هیدرولوژیکی شامل جریان میانی، جریان پایه، تلفات اولیه، نفوذ زیرسطحی، زهکشی و رواناب سطحی از اهمیت ویژه ای برخوردار بوده و اطلاعات دقیق تری از فرآیند های غالب موثر در رژیم هیدرولوژیکی زیرحوضه ها را در اختیار قرار می دهد.
نتیجه گیری: مدل (SCS–CN)اصلاح شده مدلی مفهومی بوده که رواناب را با استفاده از داده های بارش و تبخیر- تعرق پتانسیل روزانه و با دقت مناسب محاسبه می نماید. مزیت اصلی این مدل نسبت به سایر مدل های مفهومی (به عنوان مثال hymod در این تحقیق) برآورد اجزای هیدرولوژیکی مدل و تعیین پروسه غالب حوضه آبریز مورد مطالعه می باشد. در این تحقیق می توان سه جز اصلی نفوذ، تبخیر و رواناب سطحی را به ترتیب فرآیندهای غالب در حوضه آبریز لیف و همان فرآیندها ولی با ترتیب از آخر به اول را فرآیندهای غالب در زیر حوضه قره سو دانست. بنابراین مدیریت حوضه آبریز با کمک خروجی های خاص ناشی از این نوع مدل ها (درصد مقادیر اجزاء مختلف رابطه بیلان هیدرولوژیکی) به نحو بسیار موثرتری قابل حصول می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Assessment of basin hydrological components by modified conceptual continuous rainfall-runoff SCS-CN

نویسندگان [English]

  • Soraya Golnarkar 1
  • Mohsen Pourreza 2
  • Abbas Khashei 3
  • Mahdi Amirabadizadeh 4
چکیده [English]

Background and objectives: Since the problem of predicting and runoff estimating play a key role in integrated water resources management, therefore hydrological modeling especially continuous rainfall-runoff modeling may be most important part of water resource planning which is released from reservoir dams. Thus continuous daily hydrological models are useful tools for estimating runoff from rainfall. These models are able to estimate the runoff in ungagged basin. The purpose of this paper is to provide a continuous simulation model for Hydrologic forecasting so that investigate dominancy or dormancy of the processes.
Materials and methods: In this study rainfall-runoff processes involved in modified SCS-CN model calibrated in Leaf River Watershed located in US and Qarasou subbasin located in west of Iran through PSO optimization algorithm developed in MATLAB programming language with 9000 simulation numbers. Nash-Sutcliffe Efficiency (NSE) is used as objective function and the decision variables (14 parameters) within the specified range are randomly initialized. Optimum parameters were extracted through PSO. This model is calibrated and validated with two periods 1957-1961 and 1953 for Leaf River Watershed and two periods 1381-1384 and 1387 for Qarasou subbasin respectively.
Results: Model parameters were calibrated and Validation for two case studies. Comparison of the observed and simulated runoff carried out based on three performance criteria: Nash-Sutcliffe (NSE) and Kling-Gupta Efficiency (KGE) and Root Mean Square Error (RMSE). Proposed model performed these three statistics respectively for leaf River Watershed 0.81,0.87,1.40 as calibration period and 0.83, 0.86, 2.53 as validation period. Reasonable values for these criteria is also attained in Qarasou subbasin but due to more reliable data, better results is expected in Leaf River watershed. A result comparison of the SCS-CN model with Hymod as a simple conceptual model, both with the same inputs revealed latter model can simulate hydrology behavior of Leaf River Watershed and Qareso River Watershed slightly better. This may be originated due to fewer model complexities and thus less parameter uncertainty of Hydmod. In spite of this superior skill in runoff simulation of Hymod, special capabilities of modified SCS-CN model which calculate hydrological components (baseflow, percolation, throughflow, surface runoff and initial abstraction) may prove usefulness and efficiency of this new model easily.
Conclusion: modified SCS-CN model as a conceptual model calculates daily runoff using rainfall and potential evapotranspiration dataset. This model may be used to assess annual hydrologic components as well as total runoff values. Based on the results, the dominancy of the infiltration, evaporation and surface runoff processes were approved in Leaf River Watershed. These three processes but in reverse order is ranked in Qarasou subbasin as main hydrological components.

کلیدواژه‌ها [English]

  • long-term hydrologic simulation
  • Hydrological components
  • curve number method
  • Optimization algorithm PSO
  • Conceptual Model Hymod
.Arnold, J.G., Engel, B.A., and Srinivasan, R. 1993. Continuous time, grid cell watershed model,
application of advanced information technologies. Effective management of natural resources.
ASAE Publication, 04–93. American Society of Agricultural Engineers, Pp: 267-278.
2.Boughton, W.C. 1966. A mathematical model for relating runoff to rainfall with daily data.
Civil Engineering Trans I.E Australia, 38: 2. 779-787.
3.Boughton, W.C. 1968. A mathematical catchment model for estimating runoff. J. Hydrol.
(New Zealand), Pp: 75-100.
4.Boyle, D.P., Gupta, H.V., and Sorooshian, S. 2000. Toward improved calibration of
hydrologic models: Combining the strengths of manual and automatic methods. Water
Resources Research, 36: 12. 3663-3674.
5.Choi, J.Y., Engel, B.A., and Chung, H.W. 2002. Daily streamflow modelling and assessment
based on the curve-number technique. Hydrological Processes, 16: 16. 3131-3150.
6.Cooper, V.A., Nguyen, V.T.V., and Nicell, J.A. 2007. Calibration of conceptual rainfall–
runoff models using global optimisation methods with hydrologic process-based parameter
constraints. J. Hydrol. 334: 3. 455-466.
7.Crawford, N.H., and Linsley, R.K. 1966. Digital Simulation in Hydrology'Stanford Watershed
Model 4.
8.Douglas, E.M., Jacobs, J.M., Sumner, D.M., and Ray, R.L. 2009. A comparison of models
for estimating potential evapotranspiration for Florida land cover types. J. Hydrol.
373: 3. 366-376.
9.Geetha, K., Mishra, S.K., Eldho, T.I., Rastogi, A.K., and Pandey, R.P. 2008. SCS-CN-based
continuous simulation model for hydrologic forecasting. Water Resources Management,
22: 2. 165-190.
10.Gupta, H.V., Kling, H., Yilmaz, K.K., and Martinez, G.F. 2009. Decomposition of the mean
squared error and NSE performance criteria: Implications for improving hydrological
modelling. J. Hydrol. 377: 1. 80-91.
11.Heaney, J.P., Sample, D., Wright, L., and Koustas, R. 1999. Geographical information
systems, decision support systems and urban stormwater management. US Environmental
Protection Agency, National Risk Management Research Laboratory, Office of Research and
Development.
12.James, D. 1970. An Evaluation of Relationships Between Streamflow Patterns and
Watershed Characteristics Through the Use of OPSET: A Self Calibrating Version of the
Stanford Watershed Model.
13.James, L.D. 1972. Hydrologic modeling, parameter estimation and watershed characteristics.
J. Hydrol. 17: 4. 283-307.
14.Liou, E.Y. 1970. Opset: program for computerized selection of watershed parameter values
for the Stanford watershed model.
15.Mandeville, A.N., O'connell, P.E., Sutcliffe, J.V., and Nash, J.E. 1970. River flow
forecasting through conceptual models part III-The Ray catchment at Grendon Underwood.
J. Hydrol. 11: 2. 109-128.
16.Michel, C., Andréassian, V., and Perrin, C. 2005. Soil conservation service curve number
method: how to mend a wrong soil moisture accounting procedure?. Water Resources
Research, 41: 2.
17.Mishra, S.K. 1998. Long-term hydrologic simulation using SCS-CN method. Tech report.
National Institute of Hydrology, Roorkee-247 667. UP, India.
18.Mishra, S.K., and Singh, V. 2013. Soil conservation service curve number (SCS-CN)
methodology (Vol. 42). Springer Science and Business Media.
19.Mishra, S.K., and Singh, V.P. 2002. SCS-CN-based hydrologic simulation package.
Mathematical Models of Small Watershed Hydrology and Applications, Water Resources
Publs., LLC, Highlands Ranch, Pp: 391-464.
20.Mishra, S.K., and Singh, V.P. 2004a. Long-term hydrological simulation based on the Soil
Conservation Service curve number. Hydrological Processes, 18: 7. 1291-1313.
21.Mishra, S.K., and Singh, V.P. 2004b. Validity and extension of the SCS-CN method for
computing infiltration and rainfall-excess rates. Hydrological Processes, 18: 17. 3323-3345.
22.Nash, J.E., and Sutcliffe, J.V. 1970. River flow forecasting through conceptual models part IA discussion of principles. J. Hydrol. 10: 3. 282-290.
23.Ponce, V.M., and Hawkins, R.H. 1996. Runoff curve number: Has it reached maturity?. J.
Hydrol. Engin. 1: 1. 11-19.
24.Saghafian, B., Noroozpour, S., Kiani, M., and Nasab, A.R. 2016. A coupled ModClark-curve
number rainfall-runon-runoff model. Arab. J. Geosci. 9: 4. 1-13.
25.Singh, V.P. 1989. Hydrologic systems: watershed modeling (Vol. 2). Prentice Hall.
26.Singh, V.P. 1995. Computer Models of Watershed Hydrology1 Water Resources
Publications. Littleton, Colorado.
27.Singh, V.P., Frevert, D.K., Rieker, J.D., Leverson, V., Meyer, S., and Meyer, S. 2006.
Hydrologic modeling inventory: cooperative research effort. J. Irrig. Drain. Engin.
132: 2. 98-103.
28.Vrugt, J.A., Gupta, H.V., Bouten, W., and Sorooshian, S. 2003. A Shuffled Complex
Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic
model parameters. Water Resources Research, 39: 8.
29.Vrugt, J.A., Ter Braak, C.J., Gupta, H.V., and Robinson, B.A. 2009. Equifinality of formal
(DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling?. Stochastic
environmental research and risk assessment, 23: 7. 1011-1026.
30.Wagener, T., Boyle, D.P., Lees, M.J., Wheater, H.S., Gupta, H.V., and Sorooshian, S. 2001.
A framework for development and application of hydrological models. Hydrology and Earth
System Sciences, 5: 1. 13-26.